Abstract

Based on the dispersion relation, surface plasmon polaritons (SPPs) or spoof SPPs are always propagating surface waves when the operating frequency is below the asymptotic limit – the surface plasma frequency. Here we propose a method to control the rejections of spoof SPPs using metamaterial particles. By introducing electrically resonant metamaterials near an ultrathin corrugated metallic strip – the spoof SPP waveguide – to produce tight coupling and mismatch of surface impedance, we show that the SPP modes are rejected near the resonant frequencies within the propagating band. Through the modulation of scaling factor of metamaterial particles, we can manipulate the rejections of SPP modes from narrowband to broadband. Both simulation and experiment results verify the tunability of SPP rejections, which have important applications in filtering SPP waves in plasmonic circuits and systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  2. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  4. D. Lu, Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
    [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  6. C. Zhao, J. Zhang, “Plasmonic demultiplexer and guiding,” ACS Nano 4(11), 6433–6438 (2010).
    [CrossRef] [PubMed]
  7. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
    [CrossRef] [PubMed]
  8. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [CrossRef] [PubMed]
  9. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  10. Z. Han, S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
    [CrossRef] [PubMed]
  11. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  12. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
    [CrossRef] [PubMed]
  13. S. Linic, P. Christopher, D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
    [CrossRef] [PubMed]
  14. H. J. Lezec, J. A. Dionne, H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
    [CrossRef] [PubMed]
  15. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  16. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
    [CrossRef] [PubMed]
  17. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119–1128 (1950).
    [CrossRef]
  18. J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  19. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [CrossRef]
  20. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
    [CrossRef] [PubMed]
  21. X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [CrossRef]
  22. X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [CrossRef] [PubMed]
  23. T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
    [CrossRef]
  24. X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
    [CrossRef]
  25. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
    [CrossRef]
  26. W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, A. N. D. W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1(2), 021016 (2011).
  27. J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
    [CrossRef]
  28. B. Zhou, H. Li, X. Zou, T. J. Cui, “Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials,” Prog. Electromagnetics Res. 120, 235–247 (2011).
  29. H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
    [CrossRef]
  30. D. R. Smith, S. Schultz, P. Markoš, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [CrossRef]

2014 (1)

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[CrossRef]

2013 (4)

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[CrossRef] [PubMed]

2012 (2)

D. Lu, Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[CrossRef] [PubMed]

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[CrossRef]

2011 (6)

B. Zhou, H. Li, X. Zou, T. J. Cui, “Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials,” Prog. Electromagnetics Res. 120, 235–247 (2011).

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[CrossRef]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[CrossRef]

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, A. N. D. W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1(2), 021016 (2011).

Z. Han, S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[CrossRef] [PubMed]

S. Linic, P. Christopher, D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[CrossRef] [PubMed]

2010 (4)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

C. Zhao, J. Zhang, “Plasmonic demultiplexer and guiding,” ACS Nano 4(11), 6433–6438 (2010).
[CrossRef] [PubMed]

2009 (2)

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

2008 (4)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

2007 (1)

H. J. Lezec, J. A. Dionne, H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

2006 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
[CrossRef] [PubMed]

2005 (1)

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2002 (1)

D. R. Smith, S. Schultz, P. Markoš, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

1950 (1)

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119–1128 (1950).
[CrossRef]

Abashin, M.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[CrossRef] [PubMed]

Agrafiotis, S.

Agrawal, A.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[CrossRef] [PubMed]

Akalin, T.

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, A. N. D. W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1(2), 021016 (2011).

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Atwater, H. A.

H. J. Lezec, J. A. Dionne, H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Beruete, M.

Bozhevolnyi, S. I.

Z. Han, S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Chau, K. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[CrossRef] [PubMed]

Chen, W. C.

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, A. N. D. W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1(2), 021016 (2011).

Cheng, Q.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[CrossRef]

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[CrossRef]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Christopher, P.

S. Linic, P. Christopher, D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[CrossRef] [PubMed]

Cui, T. J.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[CrossRef]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[CrossRef]

B. Zhou, H. Li, X. Zou, T. J. Cui, “Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials,” Prog. Electromagnetics Res. 120, 235–247 (2011).

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Falcone, F.

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Gao, X.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Goubau, G.

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119–1128 (1950).
[CrossRef]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Han, Z.

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Hou, D. J.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[CrossRef]

Hsieh, I. J.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[CrossRef]

Ingram, D. B.

S. Linic, P. Christopher, D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[CrossRef] [PubMed]

Jiang, T.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[CrossRef]

Jiang, W. X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[CrossRef]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Kao, Y. H.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[CrossRef]

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[CrossRef] [PubMed]

H. J. Lezec, J. A. Dionne, H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Li, H.

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[CrossRef]

B. Zhou, H. Li, X. Zou, T. J. Cui, “Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials,” Prog. Electromagnetics Res. 120, 235–247 (2011).

Li, L.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Lin, H. E.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[CrossRef]

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Linic, S.

S. Linic, P. Christopher, D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, Z.

D. Lu, Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[CrossRef] [PubMed]

Lu, D.

D. Lu, Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[CrossRef] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Ma, H. F.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[CrossRef]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
[CrossRef] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Mock, J. J.

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, A. N. D. W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1(2), 021016 (2011).

Navarro-Cía, M.

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Padilla, A. N. D. W. J.

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, A. N. D. W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1(2), 021016 (2011).

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Ran, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[CrossRef]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Ruan, Z.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Shen, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[CrossRef]

Shen, X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[CrossRef]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[CrossRef]

Shi, J. H.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

Smith, D. R.

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, A. N. D. W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1(2), 021016 (2011).

D. R. Smith, S. Schultz, P. Markoš, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Sorolla, M.

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markoš, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Wu, J. J.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[CrossRef]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[CrossRef]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Xu, T.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[CrossRef] [PubMed]

Yang, T. J.

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[CrossRef]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[CrossRef]

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

Yuan, H. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Yuan, L. H.

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, J.

C. Zhao, J. Zhang, “Plasmonic demultiplexer and guiding,” ACS Nano 4(11), 6433–6438 (2010).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhao, C.

C. Zhao, J. Zhang, “Plasmonic demultiplexer and guiding,” ACS Nano 4(11), 6433–6438 (2010).
[CrossRef] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Zhou, B.

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[CrossRef]

B. Zhou, H. Li, X. Zou, T. J. Cui, “Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials,” Prog. Electromagnetics Res. 120, 235–247 (2011).

Zou, X.

B. Zhou, H. Li, X. Zou, T. J. Cui, “Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials,” Prog. Electromagnetics Res. 120, 235–247 (2011).

ACS Nano (1)

C. Zhao, J. Zhang, “Plasmonic demultiplexer and guiding,” ACS Nano 4(11), 6433–6438 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[CrossRef]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Electron. Lett. (1)

J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012).
[CrossRef]

J. Appl. Phys. (2)

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[CrossRef]

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119–1128 (1950).
[CrossRef]

Laser Photon. Rev. (1)

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014).
[CrossRef]

Nat. Commun. (1)

D. Lu, Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[CrossRef] [PubMed]

Nat. Mater. (4)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

S. Linic, P. Christopher, D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Nature (4)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

D. R. Smith, S. Schultz, P. Markoš, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Phys. Rev. X (1)

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, A. N. D. W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1(2), 021016 (2011).

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

Prog. Electromagnetics Res. (1)

B. Zhou, H. Li, X. Zou, T. J. Cui, “Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials,” Prog. Electromagnetics Res. 120, 235–247 (2011).

Science (3)

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

H. J. Lezec, J. A. Dionne, H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) The top view of spoof SPP waveguide, which is divided into three comparatively independent regions (I, II and III). (b) Part I: the CPW region with dimensions of wth (the width of inner conductor) and S_c (the width of slot lines). (c) Part II: the convertor from CPW to spoof SPP modes. P 0 ( x 0 , y 0 ) and P 1 ( x 1 , y 1 ) are starting and ending points of the exponential slot line. The transition corrugated spoof SPP waveguide is described by d1-d7, the gradient depths of grooves. (d) Double cycles of Part III, in which D, G and S are the cycle, depth and width of grooves, respectively.

Fig. 2
Fig. 2

(a) The dispersion curves of spoof SPPs for different groove depths. (b) The near-field sketch of the spoof SPPs.

Fig. 3
Fig. 3

(a) The photograph of a fabricated sample for double-frequency rejections. (b) The schematic configuration of ELC array in the DFR SPP waveguide.

Fig. 4
Fig. 4

(a) The calculated relative impedance of ELCs on the DFR SPP waveguide. (b) The transmission coefficients of the DFR SPP waveguide with different ELC scaling factors, in which the black line stands for the spoof SPP waveguide without ELCs, while the red, pink, and blue lines represent the DFR SPP wavguides with scaling parameters k = 0.7, k = 0.8, and k = 1, respectively.

Fig. 5
Fig. 5

The near-field sketches of the DFR SPP waveguide at (a) 8 GHz, (b) 7.65 GHz, and (c) 9.47 GHz.

Fig. 6
Fig. 6

The simulated and measured transmission coefficients (S21) and reflection coefficients (S11). (a) The measurement results of spoof SPP waveguide without ELC particles (black lines) and DFR SPP waveguide (red lines). (b) The simulation (black lines) and measurement (red lines) results of DFR SPP waveguide.

Fig. 7
Fig. 7

The near-electric-field distributions of DFR waveguide at different frequencies. (a-d) The simulated results at (a) 7.9GHz, (b) 7.65GHz, (c) 9.1GHz, and (d) 9.47GHz. (e-h) The measured results at (e) 7.9GHz, (f) 7.65GHz, (g) 9.1GHz, and (h) 9.47GHz.

Fig. 8
Fig. 8

(a) Photographs of top and bottom surfaces of the broadband-frequency rejection waveguide. (b) The detailed arrangement of ELCs. (c) The simulated relative impedance of ELCs on the broadband-frequency rejection waveguide. (d) The simulated (black lines) and measured (red lines) transmission coefficients (S21) and reflection coefficients (S11).

Fig. 9
Fig. 9

The near-field sketches of the broadband-frequency rejection SPP waveguide in the propagating band (a) and the rejection band (b).

Metrics