Abstract

We demonstrate ∼ 40X pulse compression (down to ∼ 300 ps) with ∼ 1 joule, nanosecond pulses for high energy applications requiring ≥ 1 gigawatt of peak power. Our method is based on the established principle of stimulated Brillouin scattering (SBS). To push the SBS technique to its highest peak-power limit, a combination of theoretical modeling and experiments is used to identify and optimize all critical parameters, including optical configuration, interaction length, intensity matching, choice of gain medium and thermal stability. Pulse compression results are presented both at 1064 nm and 532 nm, with performances close to the theoretical limit and excellent shot-to-shot reproducibility.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Maier, W. Rother, W. Kaiser, “Time resolved measurements of stimulated Brillouin scattering,” Appl. Phys. Lett. 10, 80–82 (1967).
    [CrossRef]
  2. E. Ippen, R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
    [CrossRef]
  3. D. T. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5, 516–518 (1980).
    [CrossRef] [PubMed]
  4. V. Kmetik, H. Fiedorowicz, A. A. Andreev, K. J. Witte, H. Daido, H. Fujita, M. Nakatsuka, T. Yamanaka, “Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz,” Appl. Opt. 37, 7085–7090 (1998).
    [CrossRef]
  5. H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36, 3739–3744 (1997).
    [CrossRef] [PubMed]
  6. H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
    [CrossRef]
  7. O. Chalus, J.-C. Diels, “Lifetime of fluorocarbon for high-energy stimulated Brillouin scattering,” J. Opt. Soc. Am. B 24, 606–608 (2007).
    [CrossRef]
  8. H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17, 13654–13662 (2009).
    [CrossRef] [PubMed]
  9. W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
    [CrossRef]
  10. S. Schiemann, W. Ubachs, W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
    [CrossRef]
  11. D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
    [CrossRef]
  12. S. Schiemann, W. Hogervorst, W. Ubachs, “Fourier-transform-limited laser pulses tunable in wavelength and in duration (400–2000 ps),” IEEE J. Quantum Electron. 34, 407–412 (1998).
    [CrossRef]
  13. I. Velchev, D. Neshev, W. Hogervorst, W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
    [CrossRef]
  14. C. Dane, W. Neuman, L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
    [CrossRef]
  15. R. Fedosejevs, A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
    [CrossRef]
  16. M. J. Damzen, M. H. R. Hutchinson, “High-efficiency laser-pulse compression by stimulated Brillouin scattering,” Opt. Lett. 8, 313–315 (1983).
    [CrossRef] [PubMed]
  17. M. Damzen, H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
    [CrossRef]
  18. R. R. Buzyalis, A. S. Dementjev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335 (1985).
    [CrossRef]
  19. R. W. Boyd, K. Rzaewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
    [CrossRef] [PubMed]
  20. X. Xu, J.-C. Diels, “Stable single axial mode operation of injection-seeded Q-switched Nd:YAG laser by real-time resonance tracking method,” Appl. Phys. B 114, 579–584 (2014).
    [CrossRef]
  21. R. W. Boyd, Nonlinear optics (Academic Press, 2002), chap. 9, 2
  22. W. S. Pegau, D. Gray, J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997).
    [CrossRef] [PubMed]
  23. V. Kmetik, T. Kanabe, H. Fujita, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Rev. Laser Eng. 26, 322–327 (1998).
    [CrossRef]
  24. J. Alda, G. D. Boreman, “On-axis and off-axis propagation of Gaussian beams in gradient index media,” Appl. Opt. 29, 2944–2950 (1990).
    [CrossRef] [PubMed]
  25. I. Velchev, W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71, 043810 (2005).
    [CrossRef]
  26. W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook,, vol. 2, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North Holland, 1972), pp. 1077–1150.

2014 (1)

X. Xu, J.-C. Diels, “Stable single axial mode operation of injection-seeded Q-switched Nd:YAG laser by real-time resonance tracking method,” Appl. Phys. B 114, 579–584 (2014).
[CrossRef]

2012 (1)

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[CrossRef]

2009 (1)

2007 (2)

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
[CrossRef]

O. Chalus, J.-C. Diels, “Lifetime of fluorocarbon for high-energy stimulated Brillouin scattering,” J. Opt. Soc. Am. B 24, 606–608 (2007).
[CrossRef]

2005 (1)

I. Velchev, W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71, 043810 (2005).
[CrossRef]

1999 (2)

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[CrossRef]

I. Velchev, D. Neshev, W. Hogervorst, W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[CrossRef]

1998 (3)

S. Schiemann, W. Hogervorst, W. Ubachs, “Fourier-transform-limited laser pulses tunable in wavelength and in duration (400–2000 ps),” IEEE J. Quantum Electron. 34, 407–412 (1998).
[CrossRef]

V. Kmetik, H. Fiedorowicz, A. A. Andreev, K. J. Witte, H. Daido, H. Fujita, M. Nakatsuka, T. Yamanaka, “Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz,” Appl. Opt. 37, 7085–7090 (1998).
[CrossRef]

V. Kmetik, T. Kanabe, H. Fujita, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Rev. Laser Eng. 26, 322–327 (1998).
[CrossRef]

1997 (3)

1994 (1)

C. Dane, W. Neuman, L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

1990 (2)

R. W. Boyd, K. Rzaewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

J. Alda, G. D. Boreman, “On-axis and off-axis propagation of Gaussian beams in gradient index media,” Appl. Opt. 29, 2944–2950 (1990).
[CrossRef] [PubMed]

1985 (2)

R. R. Buzyalis, A. S. Dementjev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335 (1985).
[CrossRef]

R. Fedosejevs, A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

1983 (2)

M. J. Damzen, M. H. R. Hutchinson, “High-efficiency laser-pulse compression by stimulated Brillouin scattering,” Opt. Lett. 8, 313–315 (1983).
[CrossRef] [PubMed]

M. Damzen, H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[CrossRef]

1980 (1)

1972 (1)

E. Ippen, R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

1967 (1)

M. Maier, W. Rother, W. Kaiser, “Time resolved measurements of stimulated Brillouin scattering,” Appl. Phys. Lett. 10, 80–82 (1967).
[CrossRef]

Alda, J.

Andreev, A. A.

Boreman, G. D.

Boyd, R. W.

R. W. Boyd, K. Rzaewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

R. W. Boyd, Nonlinear optics (Academic Press, 2002), chap. 9, 2

Buzyalis, R. R.

R. R. Buzyalis, A. S. Dementjev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335 (1985).
[CrossRef]

Chalus, O.

Daido, H.

Damzen, M.

M. Damzen, H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[CrossRef]

Damzen, M. J.

Dane, C.

C. Dane, W. Neuman, L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

Dementjev, A. S.

R. R. Buzyalis, A. S. Dementjev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335 (1985).
[CrossRef]

Diels, J.-C.

X. Xu, J.-C. Diels, “Stable single axial mode operation of injection-seeded Q-switched Nd:YAG laser by real-time resonance tracking method,” Appl. Phys. B 114, 579–584 (2014).
[CrossRef]

O. Chalus, J.-C. Diels, “Lifetime of fluorocarbon for high-energy stimulated Brillouin scattering,” J. Opt. Soc. Am. B 24, 606–608 (2007).
[CrossRef]

Fan, R.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[CrossRef]

Fedosejevs, R.

R. Fedosejevs, A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

Fiedorowicz, H.

Fujinoki, A.

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
[CrossRef]

Fujita, H.

Gray, D.

Guo, X.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[CrossRef]

Hackel, L.

C. Dane, W. Neuman, L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

Hasi, W.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[CrossRef]

Hatae, T.

He, W.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[CrossRef]

Hogervorst, W.

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[CrossRef]

I. Velchev, D. Neshev, W. Hogervorst, W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[CrossRef]

S. Schiemann, W. Hogervorst, W. Ubachs, “Fourier-transform-limited laser pulses tunable in wavelength and in duration (400–2000 ps),” IEEE J. Quantum Electron. 34, 407–412 (1998).
[CrossRef]

S. Schiemann, W. Ubachs, W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[CrossRef]

Hon, D. T.

Hutchinson, H.

M. Damzen, H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[CrossRef]

Hutchinson, M. H. R.

Ippen, E.

E. Ippen, R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

Kaiser, W.

M. Maier, W. Rother, W. Kaiser, “Time resolved measurements of stimulated Brillouin scattering,” Appl. Phys. Lett. 10, 80–82 (1967).
[CrossRef]

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook,, vol. 2, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North Holland, 1972), pp. 1077–1150.

Kanabe, T.

V. Kmetik, T. Kanabe, H. Fujita, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Rev. Laser Eng. 26, 322–327 (1998).
[CrossRef]

Kitamura, S.

Kmetik, V.

Kosenko, E. K.

R. R. Buzyalis, A. S. Dementjev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335 (1985).
[CrossRef]

Li, X.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[CrossRef]

Lin, D.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[CrossRef]

Lü, Z.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[CrossRef]

Maier, M.

M. Maier, W. Rother, W. Kaiser, “Time resolved measurements of stimulated Brillouin scattering,” Appl. Phys. Lett. 10, 80–82 (1967).
[CrossRef]

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook,, vol. 2, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North Holland, 1972), pp. 1077–1150.

Majewski, W.

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[CrossRef]

Nakatsuka, M.

Narum, P.

R. W. Boyd, K. Rzaewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

Neshev, D.

I. Velchev, D. Neshev, W. Hogervorst, W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[CrossRef]

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[CrossRef]

Neuman, W.

C. Dane, W. Neuman, L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

Offenberger, A.

R. Fedosejevs, A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

Pegau, W. S.

Qiao, Z.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[CrossRef]

Rother, W.

M. Maier, W. Rother, W. Kaiser, “Time resolved measurements of stimulated Brillouin scattering,” Appl. Phys. Lett. 10, 80–82 (1967).
[CrossRef]

Rzaewski, K.

R. W. Boyd, K. Rzaewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

Schiemann, S.

S. Schiemann, W. Hogervorst, W. Ubachs, “Fourier-transform-limited laser pulses tunable in wavelength and in duration (400–2000 ps),” IEEE J. Quantum Electron. 34, 407–412 (1998).
[CrossRef]

S. Schiemann, W. Ubachs, W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[CrossRef]

Stolen, R.

E. Ippen, R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

Ubachs, W.

I. Velchev, W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71, 043810 (2005).
[CrossRef]

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[CrossRef]

I. Velchev, D. Neshev, W. Hogervorst, W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[CrossRef]

S. Schiemann, W. Hogervorst, W. Ubachs, “Fourier-transform-limited laser pulses tunable in wavelength and in duration (400–2000 ps),” IEEE J. Quantum Electron. 34, 407–412 (1998).
[CrossRef]

S. Schiemann, W. Ubachs, W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[CrossRef]

Ueda, T.

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
[CrossRef]

Velchev, I.

I. Velchev, W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71, 043810 (2005).
[CrossRef]

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[CrossRef]

I. Velchev, D. Neshev, W. Hogervorst, W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[CrossRef]

Witte, K. J.

Xu, X.

X. Xu, J.-C. Diels, “Stable single axial mode operation of injection-seeded Q-switched Nd:YAG laser by real-time resonance tracking method,” Appl. Phys. B 114, 579–584 (2014).
[CrossRef]

Yamanaka, T.

Yoshida, H.

Yoshida, K.

Zaneveld, J. R. V.

Zhong, Z.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (2)

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[CrossRef]

X. Xu, J.-C. Diels, “Stable single axial mode operation of injection-seeded Q-switched Nd:YAG laser by real-time resonance tracking method,” Appl. Phys. B 114, 579–584 (2014).
[CrossRef]

Appl. Phys. Lett. (2)

M. Maier, W. Rother, W. Kaiser, “Time resolved measurements of stimulated Brillouin scattering,” Appl. Phys. Lett. 10, 80–82 (1967).
[CrossRef]

E. Ippen, R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[CrossRef]

IEEE J. Quantum Electron. (6)

S. Schiemann, W. Ubachs, W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” IEEE J. Quantum Electron. 33, 358–366 (1997).
[CrossRef]

M. Damzen, H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19, 7–14 (1983).
[CrossRef]

S. Schiemann, W. Hogervorst, W. Ubachs, “Fourier-transform-limited laser pulses tunable in wavelength and in duration (400–2000 ps),” IEEE J. Quantum Electron. 34, 407–412 (1998).
[CrossRef]

I. Velchev, D. Neshev, W. Hogervorst, W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[CrossRef]

C. Dane, W. Neuman, L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30, 1907–1915 (1994).
[CrossRef]

R. Fedosejevs, A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Part. Beams (1)

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25, 481–488 (2007).
[CrossRef]

Opt. Commun. (1)

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285, 3541–3544 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (2)

I. Velchev, W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71, 043810 (2005).
[CrossRef]

R. W. Boyd, K. Rzaewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

Rev. Laser Eng. (1)

V. Kmetik, T. Kanabe, H. Fujita, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Rev. Laser Eng. 26, 322–327 (1998).
[CrossRef]

Sov. J. Quantum Electron. (1)

R. R. Buzyalis, A. S. Dementjev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic Nd:YAG laser,” Sov. J. Quantum Electron. 15, 1335 (1985).
[CrossRef]

Other (2)

R. W. Boyd, Nonlinear optics (Academic Press, 2002), chap. 9, 2

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook,, vol. 2, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North Holland, 1972), pp. 1077–1150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Illustration of the pulse compression process by Stimulated Brillioun Scattering (SBS). (b) Layout of the amplifier-generator SBS setup. Q-W: quarter waveplate, TFP: thin film polarizer, H-W: half waveplate, Δt1: optical path length delay. Dark red: pump beam, light red: seed beam. Arrows: propagation directions. Two different SBS mediums, FC-72 and water, were studied with this setup, for compressing 1064 nm and 532 nm pulses, respectively.

Fig. 2
Fig. 2

Optimizing the delay between the pump and Stokes seed pulse is critical for optimal SBS compression. (a) Result of the simulation showing seed amplification and compression for various meeting locations (top right schematic) of pump and seed in the SBS medium. (b) Direct experimental measurement of the extra delay (Δt2) during the Stokes seed pulse generation at different energies (with 1064 nm pulses in FC-72). Black dashed line: input pulse shape; colored curves: Stokes seed pulses with energies from 3.4 mJ to 45 mJ. Inset: quantified Δt2 versus Stokes seed energy. (c) Peak power (blue axis) and “tail” energy (red axis) of the amplified Stokes pulse as a function of the Stokes seed energy. Inset: Δt2 versus Stokes seed energy. A 16 ns input pulse was used in this experiment, and Δt1 = ... ns.

Fig. 3
Fig. 3

Optimizing seed intensity for best pump energy extraction. Magenta: simulated relation between extraction efficiency versus seed/pump intensity ratio; solid black triangles: experiment in water at 532 nm.

Fig. 4
Fig. 4

Searching for optimum amplifier length for best power amplification. Color lines: simulated power amplification ratio versus delay (Δt) at amplifier lengths of, from front to back: 120 cm, 180 cm, 240 cm, 300 cm and 360 cm. Black dashed line: power amplification ratio at optimum delay as a function of amplifier length. The zero delay refers to the peak of the Gaussian pump reaching the left entrance window when the seed enters the cell from the right. FC-72 was used in the simulation as the SBS medium at 1064 nm.

Fig. 5
Fig. 5

Minimizing thermal disturbance for long-term stability. The beam deflection angle is plotted versus time in hours, under different test conditions.

Fig. 6
Fig. 6

Experimental and simulated output pulse shapes. (a) Measured compression result of 1064 nm using FC-72 as the SBS medium. Inset: pulse shape of the pump before (dotted blue) and after (filled magenta) the interaction with the Stokes seed. (b) Measured compression result of 532 nm using water as the SBS medium. Inset: compressed pulse width histogram of 100 shots. (c) Calculated output pulse shape using the experimental parameters in panel (a). (d) Calculated output pulse shape using the experimental parameters in panel (b).

Tables (1)

Tables Icon

Table 1 Parameters used in simulations

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ˜ 1 ( t , z ) = 1 2 1 ( t , z ) e i ( ω 1 t k 1 z ) + c . c .
E ˜ 2 ( t , z ) = 1 2 2 ( t , z ) e i ( ω 2 t + k 2 z ) + c . c .
ρ ˜ ( t , z ) = ρ 0 + [ 1 2 ρ ( t , z ) e i ( Ω t q z ) + c . c . ]
1 t + c / n 1 z = i ε 0 c 2 g B Γ B ρ 2
2 t c / n 2 z = i ε 0 c 2 g B Γ B ρ * 1
2 ρ ( z , t ) t 2 + ( Γ B + 2 i Ω B ) ρ ( z , t ) t + i Ω B Γ B ρ ( z , t ) = 1 2 Ω B 1 2 *
Δ t = Δ t 1 + Δ t 2

Metrics