Abstract

Commercially available supercontinuum light sources that cover most of the solar spectrum are well suited for instrumentation, where a well-collimated beam with wide spectral coverage is needed. Typically, the optical power is emitted from a single-mode photonic-crystal fiber and the output can either be collimated using a proprietary, permanently integrated, lens-based collimator or with a customer-provided, off-axis parabolic mirror. Here, we evaluate both approaches and conclude that, superior beam quality and collimation over the whole spectral range can be obtained with an off-axis parabolic mirror, however at the price of a more complex and bulky system requiring additional user alignment.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source

Andrew P. Levick, Claire L. Greenwell, Jane Ireland, Emma R. Woolliams, Teresa M. Goodman, Agnieszka Bialek, and Nigel P. Fox
Appl. Opt. 53(16) 3508-3519 (2014)

Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source

Albert Manninen, Teemu Kääriäinen, Tomi Parviainen, Scott Buchter, Miika Heiliö, and Toni Laurila
Opt. Express 22(6) 7172-7177 (2014)

Programmable light source based on an echellogram of a supercontinuum laser

Ding Luo, Miro Taphanel, Thomas Längle, and Jürgen Beyerer
Appl. Opt. 56(8) 2359-2367 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and G. Genty, “Supercontinuum light,” Phys. Today 66(7), 29 (2013).
    [Crossref]
  2. R. R. Alfano, ed., The Supercontinuum Laser Source, 2nd Ed. (Springer-Verlag, 2006).
  3. C. Xiong and W. J. Wadsworth, “Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation,” Opt. Express 16(4), 2438–2445 (2008).
    [Crossref] [PubMed]
  4. P. S. Johnston and K. K. Lehmann, “Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source,” Opt. Express 16(19), 15013–15023 (2008).
    [Crossref] [PubMed]
  5. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
    [Crossref] [PubMed]
  6. N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
    [Crossref]
  7. W. J. Smith, Modern Optical Engineering, 4th Ed. (McGraw-Hill, 2007).
  8. A. Carrasco-Sanz, S. Martín-López, P. Corredera, M. González-Herráez, and M. L. Hernanz, “High-power and high-accuracy integrating sphere radiometer: design, characterization, and calibration,” Appl. Opt. 45(3), 511–518 (2006).
    [Crossref] [PubMed]

2013 (2)

J. M. Dudley and G. Genty, “Supercontinuum light,” Phys. Today 66(7), 29 (2013).
[Crossref]

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

2008 (3)

2006 (1)

Arnold, I. J.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

Arnott, W. P.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

Carrasco-Sanz, A.

Corredera, P.

Dudley, J. M.

J. M. Dudley and G. Genty, “Supercontinuum light,” Phys. Today 66(7), 29 (2013).
[Crossref]

Genty, G.

J. M. Dudley and G. Genty, “Supercontinuum light,” Phys. Today 66(7), 29 (2013).
[Crossref]

González-Herráez, M.

Hernanz, M. L.

Hult, J.

Johnston, P. S.

Jones, R. L.

Kaminski, C. F.

Langridge, J. M.

Laurila, T.

Lehmann, K. K.

Martín-López, S.

Mazzoleni, C.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

Moosmüller, H.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

Sharma, N.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

Wadsworth, W. J.

Watt, R. S.

Xiong, C.

Appl. Opt. (1)

Atmos. Meas. Tech. (1)

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[Crossref]

Opt. Express (3)

Phys. Today (1)

J. M. Dudley and G. Genty, “Supercontinuum light,” Phys. Today 66(7), 29 (2013).
[Crossref]

Other (2)

R. R. Alfano, ed., The Supercontinuum Laser Source, 2nd Ed. (Springer-Verlag, 2006).

W. J. Smith, Modern Optical Engineering, 4th Ed. (McGraw-Hill, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup including supercontinuum source, spectroradiometer, collimator assembly (A); integrating sphere with 75-μm diameter pinhole attached (B), and linear translation stage (C). The linear translation stage is used to scan the pinhole across the beam, thereby acquiring power spectral density beam profiles.

Fig. 2
Fig. 2

Horizontal radiance profile of collimated beam from lens-based collimator through 75-μm diameter pin hole at a wavelength of 1250 nm normalized and centerd at zero. (A) Profile measured at a distance of ~53 mm from the collimator. (B) Profile measured at a distance of ~307 mm from the collimator (note the slight deveation from a Gaussian profile). (C) Profile measured at a distance of ~561 mm from the collimator (note the two spikes in the profile). (D) Profile measured at a distance of ~815 mm also displaying two spikes.

Fig. 3
Fig. 3

Horizontal radiance profile of collimated beam from off-axis parabolic mirror through 75-μm diameter pin hole at a wavelength of 1250 nm normalized and centerd at zero. (A) Profile measured at a distance of ~110 mm from the center of the parabolic mirror. (B) Profile measured at a distance of ~364 mm from the center of the parabolic mirror. (C) Profile measured at a distance of ~491 mm from the center of the parabolic mirror. (D) Profile measured at a distance of ~745 mm from the center of the parabolic mirror.

Fig. 4
Fig. 4

(A) Gaussian beam waist radius plotted as a function of distance from the collimator for the lens-based collimator. (B) Gaussian beam waist plotted as a function of distance from the collimator for the OAP mirror-based collimator.

Fig. 5
Fig. 5

The far-field divergence angles of the beams as function of wavelength. Shown as black dots is the far-field divergence angle for the lens-based collimator; notice the two minima around 550 nm and 2100 nm. The red squares show the far-field divergence angle for the OAP mirror-based collimator. The OAP mirror-based collimator divergence angles are much smaller than those of the lens-based collimator for most wavelengths.

Tables (4)

Tables Icon

Table 1 Gaussian Beam Waist for Lens-based Collimator

Tables Icon

Table 2 Gaussian Beam Waist for OAP Mirror-based Collimator

Tables Icon

Table 3 Propagation Parameters for Lens-based Collimator

Tables Icon

Table 4 Propagation Parameters for OAP Mirror-based Collimator

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(x)= A w 2 π exp( 2 ( x x 0 w ) 2 ),
w(z)= w 0 1+ ( ( z z 0 )λ π w 0 2 ) 2 ,
θ= λ π w 0 = w 0 z R ,

Metrics