Abstract

Commercially available supercontinuum light sources that cover most of the solar spectrum are well suited for instrumentation, where a well-collimated beam with wide spectral coverage is needed. Typically, the optical power is emitted from a single-mode photonic-crystal fiber and the output can either be collimated using a proprietary, permanently integrated, lens-based collimator or with a customer-provided, off-axis parabolic mirror. Here, we evaluate both approaches and conclude that, superior beam quality and collimation over the whole spectral range can be obtained with an off-axis parabolic mirror, however at the price of a more complex and bulky system requiring additional user alignment.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, “Supercontinuum light,” Phys. Today 66(7), 29 (2013).
    [CrossRef]
  2. R. R. Alfano, ed., The Supercontinuum Laser Source, 2nd Ed. (Springer-Verlag, 2006).
  3. C. Xiong, W. J. Wadsworth, “Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation,” Opt. Express 16(4), 2438–2445 (2008).
    [CrossRef] [PubMed]
  4. P. S. Johnston, K. K. Lehmann, “Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source,” Opt. Express 16(19), 15013–15023 (2008).
    [CrossRef] [PubMed]
  5. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
    [CrossRef] [PubMed]
  6. N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
    [CrossRef]
  7. W. J. Smith, Modern Optical Engineering, 4th Ed. (McGraw-Hill, 2007).
  8. A. Carrasco-Sanz, S. Martín-López, P. Corredera, M. González-Herráez, M. L. Hernanz, “High-power and high-accuracy integrating sphere radiometer: design, characterization, and calibration,” Appl. Opt. 45(3), 511–518 (2006).
    [CrossRef] [PubMed]

2013 (2)

J. M. Dudley, G. Genty, “Supercontinuum light,” Phys. Today 66(7), 29 (2013).
[CrossRef]

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[CrossRef]

2008 (3)

2006 (1)

Arnold, I. J.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[CrossRef]

Arnott, W. P.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[CrossRef]

Carrasco-Sanz, A.

Corredera, P.

Dudley, J. M.

J. M. Dudley, G. Genty, “Supercontinuum light,” Phys. Today 66(7), 29 (2013).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, “Supercontinuum light,” Phys. Today 66(7), 29 (2013).
[CrossRef]

González-Herráez, M.

Hernanz, M. L.

Hult, J.

Johnston, P. S.

Jones, R. L.

Kaminski, C. F.

Langridge, J. M.

Laurila, T.

Lehmann, K. K.

Martín-López, S.

Mazzoleni, C.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[CrossRef]

Moosmüller, H.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[CrossRef]

Sharma, N.

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[CrossRef]

Wadsworth, W. J.

Watt, R. S.

Xiong, C.

Appl. Opt. (1)

Atmos. Meas. Tech. (1)

N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, C. Mazzoleni, “Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source,” Atmos. Meas. Tech. 6(12), 3501–3513 (2013).
[CrossRef]

Opt. Express (3)

Phys. Today (1)

J. M. Dudley, G. Genty, “Supercontinuum light,” Phys. Today 66(7), 29 (2013).
[CrossRef]

Other (2)

R. R. Alfano, ed., The Supercontinuum Laser Source, 2nd Ed. (Springer-Verlag, 2006).

W. J. Smith, Modern Optical Engineering, 4th Ed. (McGraw-Hill, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup including supercontinuum source, spectroradiometer, collimator assembly (A); integrating sphere with 75-μm diameter pinhole attached (B), and linear translation stage (C). The linear translation stage is used to scan the pinhole across the beam, thereby acquiring power spectral density beam profiles.

Fig. 2
Fig. 2

Horizontal radiance profile of collimated beam from lens-based collimator through 75-μm diameter pin hole at a wavelength of 1250 nm normalized and centerd at zero. (A) Profile measured at a distance of ~53 mm from the collimator. (B) Profile measured at a distance of ~307 mm from the collimator (note the slight deveation from a Gaussian profile). (C) Profile measured at a distance of ~561 mm from the collimator (note the two spikes in the profile). (D) Profile measured at a distance of ~815 mm also displaying two spikes.

Fig. 3
Fig. 3

Horizontal radiance profile of collimated beam from off-axis parabolic mirror through 75-μm diameter pin hole at a wavelength of 1250 nm normalized and centerd at zero. (A) Profile measured at a distance of ~110 mm from the center of the parabolic mirror. (B) Profile measured at a distance of ~364 mm from the center of the parabolic mirror. (C) Profile measured at a distance of ~491 mm from the center of the parabolic mirror. (D) Profile measured at a distance of ~745 mm from the center of the parabolic mirror.

Fig. 4
Fig. 4

(A) Gaussian beam waist radius plotted as a function of distance from the collimator for the lens-based collimator. (B) Gaussian beam waist plotted as a function of distance from the collimator for the OAP mirror-based collimator.

Fig. 5
Fig. 5

The far-field divergence angles of the beams as function of wavelength. Shown as black dots is the far-field divergence angle for the lens-based collimator; notice the two minima around 550 nm and 2100 nm. The red squares show the far-field divergence angle for the OAP mirror-based collimator. The OAP mirror-based collimator divergence angles are much smaller than those of the lens-based collimator for most wavelengths.

Tables (4)

Tables Icon

Table 1 Gaussian Beam Waist for Lens-based Collimator

Tables Icon

Table 2 Gaussian Beam Waist for OAP Mirror-based Collimator

Tables Icon

Table 3 Propagation Parameters for Lens-based Collimator

Tables Icon

Table 4 Propagation Parameters for OAP Mirror-based Collimator

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(x)= A w 2 π exp( 2 ( x x 0 w ) 2 ),
w(z)= w 0 1+ ( ( z z 0 )λ π w 0 2 ) 2 ,
θ= λ π w 0 = w 0 z R ,

Metrics