Abstract

Optical nanoantennas made of two metals are proposed to produce a Seebeck voltage proportional to the Stokes parameters of a light beam. The analysis is made using simulations in the electromagnetic and thermal domains. Each Stokes parameter is independently obtained from a dedicated nanoantenna configuration. S1 and S2 rely on the combination of two orthogonal dipoles. S3 is given by arranging two Archimedian spirals with opposite orientations. The analysis also includes an evaluation of the error associated with the Seebeck voltage, and the crosstalk between Stokes parameters. The results could lead to the conception of polarization sensors having a receiving area smaller than 10λ2. We illustrate these findings with a design of a polarimetric pixel.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  2. L. Novotny, N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [CrossRef]
  3. J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1998).
    [CrossRef]
  4. L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008).
    [CrossRef]
  5. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothouizen, “Nanometer thin-film Bi-NiO-Bi diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
    [CrossRef]
  6. F. Gonzalez, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
    [CrossRef]
  7. A. Cuadrado, J. Alda, F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
    [CrossRef]
  8. A. Cuadrado, J. Alda, F. J. Gonzalez, “Multiphysics simulation of optical nanoantennas working as distributed bolometers in ther infrared,” J. Nanophotonics 7, 073093 (2013).
    [CrossRef]
  9. A. Cuadrado, M. Silva-López, F. J. González, J. Alda, “Robustness of antenna-coupled distributed bolometers,” Opt. Lett. 38(19), 3784–3787 (2013).
    [CrossRef] [PubMed]
  10. C. Fu, “Antenna-coupled Thermopiles,” M.S. Dissertation, University of Central Florida, (1998).
  11. G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013).
    [CrossRef]
  12. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (Taylor and Francis, 2006).
  13. F. J. Gonzalez, C. Fumeaux, J. Alda, G. D. Boreman, “Thermal-impedance model of electrostatic discharge effects on microbolometers,” Microwave Opt. Technol. Lett. 26, 291–293 (2000).
    [CrossRef]
  14. G. Baffou, C. Girard, R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 36805 (2010).
    [CrossRef]
  15. R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000).
    [CrossRef]
  16. J. Scott Tyo, D. L. Goldstein, D. B. Chenault, J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [CrossRef] [PubMed]
  17. F. Goudail, J. Scott Tyo, “When is polarimetric imaging preferable to intensity imaging for target detection?” J. Opt. Soc. Am. A 28(1), 46–53 (2011).
    [CrossRef]
  18. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J-Appl. Phys. 40, 1–47 (2007).
    [CrossRef]
  19. R. Martinez-Herrero, P. M. Mejías, G. Piquero, V. Ramírez-Sánchez, “Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams,” Opt. Commun. 281, 1976–1980 (2008).
    [CrossRef]
  20. G. P. Nording, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A. 16(5), 1168–1174 (1999).
    [CrossRef]
  21. M. W. Kudenov, J. L. Pezzaniti, G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
    [CrossRef]
  22. P. Krenz, J. Alda, G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. & Technol. 51(4), 340–343 (2008).
    [CrossRef]
  23. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977, Chap. I).
  24. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  25. C. G. Mattsson, K. Bertilssson, G. Thungström, H.-E. Nilsson, H. Martin, “Thermal simulation and design optimization of a thermopile infrared detector with a SU-8 membrane,” J. Michromech. Microeng. 19, 055016 (2009).
    [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997, Vol. III).

2013

A. Cuadrado, J. Alda, F. J. Gonzalez, “Multiphysics simulation of optical nanoantennas working as distributed bolometers in ther infrared,” J. Nanophotonics 7, 073093 (2013).
[CrossRef]

A. Cuadrado, M. Silva-López, F. J. González, J. Alda, “Robustness of antenna-coupled distributed bolometers,” Opt. Lett. 38(19), 3784–3787 (2013).
[CrossRef] [PubMed]

G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013).
[CrossRef]

2012

A. Cuadrado, J. Alda, F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
[CrossRef]

2011

2010

G. Baffou, C. Girard, R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 36805 (2010).
[CrossRef]

2009

P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

M. W. Kudenov, J. L. Pezzaniti, G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

C. G. Mattsson, K. Bertilssson, G. Thungström, H.-E. Nilsson, H. Martin, “Thermal simulation and design optimization of a thermopile infrared detector with a SU-8 membrane,” J. Michromech. Microeng. 19, 055016 (2009).
[CrossRef]

2008

P. Krenz, J. Alda, G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. & Technol. 51(4), 340–343 (2008).
[CrossRef]

R. Martinez-Herrero, P. M. Mejías, G. Piquero, V. Ramírez-Sánchez, “Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams,” Opt. Commun. 281, 1976–1980 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

2007

J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J-Appl. Phys. 40, 1–47 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

2006

2005

F. Gonzalez, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

2000

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000).
[CrossRef]

F. J. Gonzalez, C. Fumeaux, J. Alda, G. D. Boreman, “Thermal-impedance model of electrostatic discharge effects on microbolometers,” Microwave Opt. Technol. Lett. 26, 291–293 (2000).
[CrossRef]

1999

G. P. Nording, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A. 16(5), 1168–1174 (1999).
[CrossRef]

1998

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothouizen, “Nanometer thin-film Bi-NiO-Bi diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1998).
[CrossRef]

Alda, J.

A. Cuadrado, J. Alda, F. J. Gonzalez, “Multiphysics simulation of optical nanoantennas working as distributed bolometers in ther infrared,” J. Nanophotonics 7, 073093 (2013).
[CrossRef]

A. Cuadrado, M. Silva-López, F. J. González, J. Alda, “Robustness of antenna-coupled distributed bolometers,” Opt. Lett. 38(19), 3784–3787 (2013).
[CrossRef] [PubMed]

A. Cuadrado, J. Alda, F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
[CrossRef]

P. Krenz, J. Alda, G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. & Technol. 51(4), 340–343 (2008).
[CrossRef]

F. J. Gonzalez, C. Fumeaux, J. Alda, G. D. Boreman, “Thermal-impedance model of electrostatic discharge effects on microbolometers,” Microwave Opt. Technol. Lett. 26, 291–293 (2000).
[CrossRef]

J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1998).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977, Chap. I).

Baffou, G.

G. Baffou, C. Girard, R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 36805 (2010).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977, Chap. I).

Bernstein, G. H.

G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013).
[CrossRef]

Bertilssson, K.

C. G. Mattsson, K. Bertilssson, G. Thungström, H.-E. Nilsson, H. Martin, “Thermal simulation and design optimization of a thermopile infrared detector with a SU-8 membrane,” J. Michromech. Microeng. 19, 055016 (2009).
[CrossRef]

Bharadwaj, P.

Boreman, G.

P. Krenz, J. Alda, G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. & Technol. 51(4), 340–343 (2008).
[CrossRef]

F. Gonzalez, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1998).
[CrossRef]

Boreman, G. D.

F. J. Gonzalez, C. Fumeaux, J. Alda, G. D. Boreman, “Thermal-impedance model of electrostatic discharge effects on microbolometers,” Microwave Opt. Technol. Lett. 26, 291–293 (2000).
[CrossRef]

Chenault, D. B.

Codreanu, I.

Cuadrado, A.

A. Cuadrado, J. Alda, F. J. Gonzalez, “Multiphysics simulation of optical nanoantennas working as distributed bolometers in ther infrared,” J. Nanophotonics 7, 073093 (2013).
[CrossRef]

A. Cuadrado, M. Silva-López, F. J. González, J. Alda, “Robustness of antenna-coupled distributed bolometers,” Opt. Lett. 38(19), 3784–3787 (2013).
[CrossRef] [PubMed]

A. Cuadrado, J. Alda, F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
[CrossRef]

Davidson, J. A.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000).
[CrossRef]

Deguzman, P. C.

G. P. Nording, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A. 16(5), 1168–1174 (1999).
[CrossRef]

Deutsch, B.

Dotson, J. L.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000).
[CrossRef]

Dowell, C. D.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000).
[CrossRef]

Fu, C.

C. Fu, “Antenna-coupled Thermopiles,” M.S. Dissertation, University of Central Florida, (1998).

Fumeaux, C.

F. J. Gonzalez, C. Fumeaux, J. Alda, G. D. Boreman, “Thermal-impedance model of electrostatic discharge effects on microbolometers,” Microwave Opt. Technol. Lett. 26, 291–293 (2000).
[CrossRef]

J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1998).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothouizen, “Nanometer thin-film Bi-NiO-Bi diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

Gerhart, G. R.

M. W. Kudenov, J. L. Pezzaniti, G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

Gil, J. J.

J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J-Appl. Phys. 40, 1–47 (2007).
[CrossRef]

Girard, C.

G. Baffou, C. Girard, R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 36805 (2010).
[CrossRef]

Goldstein, D. L.

Gonzalez, F.

F. Gonzalez, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

Gonzalez, F. J.

A. Cuadrado, J. Alda, F. J. Gonzalez, “Multiphysics simulation of optical nanoantennas working as distributed bolometers in ther infrared,” J. Nanophotonics 7, 073093 (2013).
[CrossRef]

A. Cuadrado, J. Alda, F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
[CrossRef]

F. J. Gonzalez, C. Fumeaux, J. Alda, G. D. Boreman, “Thermal-impedance model of electrostatic discharge effects on microbolometers,” Microwave Opt. Technol. Lett. 26, 291–293 (2000).
[CrossRef]

González, F. J.

Goudail, F.

Herrmann, W.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothouizen, “Nanometer thin-film Bi-NiO-Bi diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

Hildebrand, R. H.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000).
[CrossRef]

Jones, M. W.

G. P. Nording, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A. 16(5), 1168–1174 (1999).
[CrossRef]

Kneubühl, F. K.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothouizen, “Nanometer thin-film Bi-NiO-Bi diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Krenz, P.

G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013).
[CrossRef]

P. Krenz, J. Alda, G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. & Technol. 51(4), 340–343 (2008).
[CrossRef]

Kudenov, M. W.

M. W. Kudenov, J. L. Pezzaniti, G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Martin, H.

C. G. Mattsson, K. Bertilssson, G. Thungström, H.-E. Nilsson, H. Martin, “Thermal simulation and design optimization of a thermopile infrared detector with a SU-8 membrane,” J. Michromech. Microeng. 19, 055016 (2009).
[CrossRef]

Martinez-Herrero, R.

R. Martinez-Herrero, P. M. Mejías, G. Piquero, V. Ramírez-Sánchez, “Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams,” Opt. Commun. 281, 1976–1980 (2008).
[CrossRef]

Mattsson, C. G.

C. G. Mattsson, K. Bertilssson, G. Thungström, H.-E. Nilsson, H. Martin, “Thermal simulation and design optimization of a thermopile infrared detector with a SU-8 membrane,” J. Michromech. Microeng. 19, 055016 (2009).
[CrossRef]

Meier, J. T.

G. P. Nording, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A. 16(5), 1168–1174 (1999).
[CrossRef]

Mejías, P. M.

R. Martinez-Herrero, P. M. Mejías, G. Piquero, V. Ramírez-Sánchez, “Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams,” Opt. Commun. 281, 1976–1980 (2008).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Nilsson, H.-E.

C. G. Mattsson, K. Bertilssson, G. Thungström, H.-E. Nilsson, H. Martin, “Thermal simulation and design optimization of a thermopile infrared detector with a SU-8 membrane,” J. Michromech. Microeng. 19, 055016 (2009).
[CrossRef]

Nording, G. P.

G. P. Nording, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A. 16(5), 1168–1174 (1999).
[CrossRef]

Novak, G.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000).
[CrossRef]

Novotny, L.

L. Novotny, N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Okyay, A. k.

L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Orlov, A. O.

G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997, Vol. III).

Pezzaniti, J. L.

M. W. Kudenov, J. L. Pezzaniti, G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

Piquero, G.

R. Martinez-Herrero, P. M. Mejías, G. Piquero, V. Ramírez-Sánchez, “Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams,” Opt. Commun. 281, 1976–1980 (2008).
[CrossRef]

Porod, W.

G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013).
[CrossRef]

Quidant, R.

G. Baffou, C. Girard, R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 36805 (2010).
[CrossRef]

Ramírez-Sánchez, V.

R. Martinez-Herrero, P. M. Mejías, G. Piquero, V. Ramírez-Sánchez, “Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams,” Opt. Commun. 281, 1976–1980 (2008).
[CrossRef]

Rothouizen, H.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothouizen, “Nanometer thin-film Bi-NiO-Bi diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

Rowe, D. M.

D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (Taylor and Francis, 2006).

Schaefer, J.

Scheneider, L. C.

G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013).
[CrossRef]

Scott Tyo, J.

Shaw, J. A.

Silva-López, M.

Sraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Szakmany, G. P.

G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013).
[CrossRef]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Thungström, G.

C. G. Mattsson, K. Bertilssson, G. Thungström, H.-E. Nilsson, H. Martin, “Thermal simulation and design optimization of a thermopile infrared detector with a SU-8 membrane,” J. Michromech. Microeng. 19, 055016 (2009).
[CrossRef]

Vaillancourt, J. E.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000).
[CrossRef]

van Hulst, N.

L. Novotny, N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

Eur. Phys. J-Appl. Phys.

J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J-Appl. Phys. 40, 1–47 (2007).
[CrossRef]

IEEE Trans. Nanotechnol.

G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013).
[CrossRef]

Infrared Phys. & Technol.

P. Krenz, J. Alda, G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. & Technol. 51(4), 340–343 (2008).
[CrossRef]

Infrared Phys. Technol.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothouizen, “Nanometer thin-film Bi-NiO-Bi diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

F. Gonzalez, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[CrossRef]

J. Michromech. Microeng.

C. G. Mattsson, K. Bertilssson, G. Thungström, H.-E. Nilsson, H. Martin, “Thermal simulation and design optimization of a thermopile infrared detector with a SU-8 membrane,” J. Michromech. Microeng. 19, 055016 (2009).
[CrossRef]

J. Nanophotonics

A. Cuadrado, J. Alda, F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
[CrossRef]

A. Cuadrado, J. Alda, F. J. Gonzalez, “Multiphysics simulation of optical nanoantennas working as distributed bolometers in ther infrared,” J. Nanophotonics 7, 073093 (2013).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. A.

G. P. Nording, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A. 16(5), 1168–1174 (1999).
[CrossRef]

Microwave Opt. Technol. Lett.

F. J. Gonzalez, C. Fumeaux, J. Alda, G. D. Boreman, “Thermal-impedance model of electrostatic discharge effects on microbolometers,” Microwave Opt. Technol. Lett. 26, 291–293 (2000).
[CrossRef]

Nat. Photonics

L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

L. Novotny, N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Opt. Commun.

R. Martinez-Herrero, P. M. Mejías, G. Piquero, V. Ramírez-Sánchez, “Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams,” Opt. Commun. 281, 1976–1980 (2008).
[CrossRef]

Opt. Eng.

M. W. Kudenov, J. L. Pezzaniti, G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

G. Baffou, C. Girard, R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 36805 (2010).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Publ. Astron. Soc. Pac.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000).
[CrossRef]

Other

D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (Taylor and Francis, 2006).

C. Fu, “Antenna-coupled Thermopiles,” M.S. Dissertation, University of Central Florida, (1998).

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997, Vol. III).

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977, Chap. I).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Arrangement of two resonant structures for their use as Seebeck nanoantennas. The dipole configuration (a) is selective to linear polarization and the Archimedian spirals (b) work for circular polarization.

Fig. 2
Fig. 2

Top: Temperature map of the two orthogonal dipole arrangement used for the detection of S1 and S2 for three orientation of linearly polarized light (horizontal, S1 = 1, oblique at 45°, S2 = 1, and vertical S1 = −1). Bottom: Temperature distribution of two Archimedian spirals having opposite helicity and used for the detection of the S3 parameter. The cases represented here are: right-handed circular polarized light (S3 = 1), linear polarization at 0° (S1 = 1), and Left-handed circular polarized light (S3 = −1).

Fig. 3
Fig. 3

Top: Temperature profile along the lead line of the dipole structure for five cases of linear polarized light. Center: temperature distribution along the spiral arrangement for five cases of elliptical polarized light along a meridian of the Poincaré sphere (S2 = 0). Bottom: temperature profile along the spiral arrangement for five cases of linearly polarized light (S3 = 0). The vertical lines mark the location of the junctions.

Fig. 4
Fig. 4

Left: Signal obtained from the two-dipole configuration as a function of S1 when illuminating with linear polarized light at different angles and having S3 = 0. Center: See-beck voltage obtained from the two Archimedian spirals for various combinations of RCP an LCP as a function of the value of the S3 parameter. In this case we move along a meridian of the Poincaré sphere having S2 = 0. Right: The signal given by the spirals arrangement is also a linear function of S2 when moving along the equator of the Poincaré sphere (S3 = 0)

Fig. 5
Fig. 5

Temperature map on the surface of the junctions for the dipole antenna arrangement. The map at the top corresponds with a linear polarization aligned along one of the dipoles that becomes the hot junctions. The other junctions (cold junction) is represented in the middle map for the same linear polarization. The map at the bottom is for a linear polarization at 45° with respect to the dipoles. In this last case the maps of the two surfaces are equal.

Fig. 6
Fig. 6

Location on the Poincaré sphere of the incoming radiation (blue dots) and the results obtained from the evaluation of the Stokes parameters using the elements proposed in this contribution (red dots). We have also represented the polarization ellipses for the cases analyzed here. The original ellipse is represented as a solid blue line and the ellipse obtained from the Stokes parameters given by the nanoantennas is plotted as a dashed red line.

Fig. 7
Fig. 7

Geometrical arrangement of a pixel that is able to measure the Stokes parameter of an infrared beam. Each subpixel is responsible for the detection of each one of the Stokes parameter independently. The resonant element appearing at the S0 subpixel has not been analyzed in this contribution and can be substituted by any other arrangement exposing a junction to the incident irradiance. The red bar represents the wavelength in vacuum. In the case analyzed in this paper λ0 = 10.6μm

Tables (1)

Tables Icon

Table 1 Values of the Stokes parameters of the beam illuminated the array (input) and values obtained from the signals given by the antenna arrangements (output). The last column corresponds to the euclidean distance between the two points represented by the Stokes parameters for each case.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

s 0 = I x + I y ,
s 1 = I x I y ,
s 2 = I + 45 ° I 45 °
s 3 = I RCP I LCP ,
V 0 90 = α 11 S 1 + δ 1 ,
V ± 45 = α 22 S 2 + δ 2 ,
V D-L = α 32 S 2 + α 33 S 3 + δ 3 ,
V = A S + Δ ,
S ant = A 1 ( V ant Δ ) ,

Metrics