Abstract

The number and position of assembled nanowires cannot be controlled using most nanowire sensor assembling methods. In this paper, we demonstrate a high-yield, highly flexible platform for nanowire sensor assembly using a combination of optically induced dielectrophoresis (ODEP) and conventional dielectrophoresis (DEP). With the ODEP platform, optical images can be used as virtual electrodes to locally turn on a non-contact DEP force and manipulate a micron- or nano-scale substance suspended in fluid. Nanowires were first moved next to the previously deposited metal electrodes using optical images and, then, were attracted to and arranged in the gap between two electrodes through DEP forces generated by switching on alternating current signals to the metal electrodes. A single nanowire can be assembled within 24 seconds using this approach. In addition, the number of nanowires in a single nanowire sensor can be controlled, and the assembly of a single nanowire on each of the adjacent electrodes can also be achieved. The electrical properties of the assembled nanowires were characterized by IV curve measurement. Additionally, the contact resistance between the nanowires and electrodes and the stickiness between the nanowires and substrates were further investigated in this study.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, Y. Wang, “Nanodevices based on silicon nanowires,” Recent Pat. Nanotechnol. 3(1), 1–9 (2009).
    [CrossRef] [PubMed]
  2. D. I. Suh, S. Y. Lee, J. H. Hyung, T. H. Kim, S. K. Lee, “Multiple ZnO nanowires field-effect transistors,” J. Phys. Chem. C 112(4), 1276–1281 (2008).
    [CrossRef]
  3. J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012).
    [PubMed]
  4. Y. Hu, R. R. Lapierre, M. Li, K. Chen, J. J. He, “Optical characteristics of GaAs nanowire solar cells,” J. Appl. Phys. 112(10), 104311 (2012).
    [CrossRef]
  5. M. Han, S. Liu, L. Zhang, C. Zhang, W. Tu, Z. Dai, J. Bao, “Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction,” ACS Appl. Mater. Interfaces 4(12), 6654–6660 (2012).
    [CrossRef] [PubMed]
  6. T. Lim, S. J. Ahn, M. Suh, O. K. Kwon, M. Meyyappan, S. Ju, “A nanowire-based shift register for display scan drivers,” Nanotechnology 22(40), 405203 (2011).
    [CrossRef] [PubMed]
  7. F. Patolsky, G. Zheng, C. M. Lieber, “Nanowire-based biosensors,” Anal. Chem. 78(13), 4260–4269 (2006).
    [CrossRef] [PubMed]
  8. Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012).
    [CrossRef] [PubMed]
  9. S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sensor Actuat. B-Chem. 155(2), 592–597 (2011).
    [CrossRef]
  10. F. Patolsky, G. Zheng, C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
    [CrossRef] [PubMed]
  11. K. I. Chen, B. R. Li, Y. T. Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today 6(2), 131–154 (2011).
    [CrossRef]
  12. S. Choi, I. Park, Z. Hao, H. Y. N. Holman, A. P. Pisano, “Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors,” Appl. Phys., A Mater. Sci. Process. 107(2), 421–428 (2012).
    [CrossRef]
  13. A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, D. L. Kwong, “Silicon nanowire sensor array using top–down CMOS technology, ” Sensor Actuat. A-Phys. 145–146, 207–213 (2008).
    [CrossRef]
  14. A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279(5348), 208–211 (1998).
    [CrossRef] [PubMed]
  15. Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett. 78(15), 2214–2216 (2001).
    [CrossRef]
  16. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. 15(5), 464–466 (2003).
    [CrossRef]
  17. X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012).
    [CrossRef]
  18. G. Filipič, U. Cvelbar, “Copper oxide nanowires: A review of growth,” Nanotechnology 23(19), 194001 (2012).
    [CrossRef] [PubMed]
  19. Y. Sun, B. Gates, B. Mayers, Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
    [CrossRef]
  20. S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, C. M. Lieber, “Scalable interconnection and integration of nanowire devices without registration,” Nano Lett. 4(5), 915–919 (2004).
    [CrossRef]
  21. Y. L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, “Automated nanomanipulation for nanodevice construction,” Nanotechnology 23(6), 065304 (2012).
    [CrossRef] [PubMed]
  22. J. Li, Y. Zhang, S. To, L. You, Y. Sun, “Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity,” ACS Nano 5(8), 6661–6668 (2011).
    [CrossRef] [PubMed]
  23. S. W. Lee, G. Jo, T. Lee, Y. G. Lee, “Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers,” Opt. Express 17(20), 17491–17501 (2009).
    [CrossRef] [PubMed]
  24. Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
    [CrossRef] [PubMed]
  25. A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
    [CrossRef] [PubMed]
  26. S. H. Lee, H. J. Lee, K. Ino, H. Shiku, T. Yao, T. Matsue, “Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires,” J. Phys. Chem. C 113(45), 19376–19381 (2009).
    [CrossRef]
  27. E. M. Freer, O. Grachev, X. Duan, S. Martin, D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis,” Nat. Nanotechnol. 5(7), 525–530 (2010).
    [CrossRef] [PubMed]
  28. Z. Wang, M. Kroener, P. Woias, “Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis,” Sensor Actuat. A-Phys. 188, 417–426 (2012).
    [CrossRef]
  29. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
    [CrossRef] [PubMed]
  30. A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
    [CrossRef]
  31. B. J. Kirby, E. F. Hasselbrink., “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis 25(2), 187–202 (2004).
    [CrossRef] [PubMed]
  32. J. G. Park, S. H. Lee, J. S. Ryu, Y. K. Hong, T. G. Kim, A. A. Busnaina, “Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning,” J. Electrochem. Soc. 153(9), G811–G814 (2006).
    [CrossRef]
  33. C. D. Fung, P. W. Cheung, W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron. Dev. 33(1), 8–18 (1986).
    [CrossRef]

2012

J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012).
[PubMed]

Y. Hu, R. R. Lapierre, M. Li, K. Chen, J. J. He, “Optical characteristics of GaAs nanowire solar cells,” J. Appl. Phys. 112(10), 104311 (2012).
[CrossRef]

M. Han, S. Liu, L. Zhang, C. Zhang, W. Tu, Z. Dai, J. Bao, “Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction,” ACS Appl. Mater. Interfaces 4(12), 6654–6660 (2012).
[CrossRef] [PubMed]

Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012).
[CrossRef] [PubMed]

S. Choi, I. Park, Z. Hao, H. Y. N. Holman, A. P. Pisano, “Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors,” Appl. Phys., A Mater. Sci. Process. 107(2), 421–428 (2012).
[CrossRef]

X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012).
[CrossRef]

G. Filipič, U. Cvelbar, “Copper oxide nanowires: A review of growth,” Nanotechnology 23(19), 194001 (2012).
[CrossRef] [PubMed]

Y. L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, “Automated nanomanipulation for nanodevice construction,” Nanotechnology 23(6), 065304 (2012).
[CrossRef] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Z. Wang, M. Kroener, P. Woias, “Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis,” Sensor Actuat. A-Phys. 188, 417–426 (2012).
[CrossRef]

2011

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

J. Li, Y. Zhang, S. To, L. You, Y. Sun, “Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity,” ACS Nano 5(8), 6661–6668 (2011).
[CrossRef] [PubMed]

K. I. Chen, B. R. Li, Y. T. Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today 6(2), 131–154 (2011).
[CrossRef]

S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sensor Actuat. B-Chem. 155(2), 592–597 (2011).
[CrossRef]

T. Lim, S. J. Ahn, M. Suh, O. K. Kwon, M. Meyyappan, S. Ju, “A nanowire-based shift register for display scan drivers,” Nanotechnology 22(40), 405203 (2011).
[CrossRef] [PubMed]

2010

E. M. Freer, O. Grachev, X. Duan, S. Martin, D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis,” Nat. Nanotechnol. 5(7), 525–530 (2010).
[CrossRef] [PubMed]

2009

S. W. Lee, G. Jo, T. Lee, Y. G. Lee, “Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers,” Opt. Express 17(20), 17491–17501 (2009).
[CrossRef] [PubMed]

S. H. Lee, H. J. Lee, K. Ino, H. Shiku, T. Yao, T. Matsue, “Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires,” J. Phys. Chem. C 113(45), 19376–19381 (2009).
[CrossRef]

Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, Y. Wang, “Nanodevices based on silicon nanowires,” Recent Pat. Nanotechnol. 3(1), 1–9 (2009).
[CrossRef] [PubMed]

2008

D. I. Suh, S. Y. Lee, J. H. Hyung, T. H. Kim, S. K. Lee, “Multiple ZnO nanowires field-effect transistors,” J. Phys. Chem. C 112(4), 1276–1281 (2008).
[CrossRef]

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, D. L. Kwong, “Silicon nanowire sensor array using top–down CMOS technology, ” Sensor Actuat. A-Phys. 145–146, 207–213 (2008).
[CrossRef]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

2007

A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
[CrossRef]

2006

J. G. Park, S. H. Lee, J. S. Ryu, Y. K. Hong, T. G. Kim, A. A. Busnaina, “Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning,” J. Electrochem. Soc. 153(9), G811–G814 (2006).
[CrossRef]

F. Patolsky, G. Zheng, C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[CrossRef] [PubMed]

F. Patolsky, G. Zheng, C. M. Lieber, “Nanowire-based biosensors,” Anal. Chem. 78(13), 4260–4269 (2006).
[CrossRef] [PubMed]

2004

S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, C. M. Lieber, “Scalable interconnection and integration of nanowire devices without registration,” Nano Lett. 4(5), 915–919 (2004).
[CrossRef]

B. J. Kirby, E. F. Hasselbrink., “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis 25(2), 187–202 (2004).
[CrossRef] [PubMed]

2003

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. 15(5), 464–466 (2003).
[CrossRef]

2002

Y. Sun, B. Gates, B. Mayers, Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[CrossRef]

2001

Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett. 78(15), 2214–2216 (2001).
[CrossRef]

1998

A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279(5348), 208–211 (1998).
[CrossRef] [PubMed]

1986

C. D. Fung, P. W. Cheung, W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron. Dev. 33(1), 8–18 (1986).
[CrossRef]

Agarwal, A.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, D. L. Kwong, “Silicon nanowire sensor array using top–down CMOS technology, ” Sensor Actuat. A-Phys. 145–146, 207–213 (2008).
[CrossRef]

Ahn, S. J.

T. Lim, S. J. Ahn, M. Suh, O. K. Kwon, M. Meyyappan, S. Ju, “A nanowire-based shift register for display scan drivers,” Nanotechnology 22(40), 405203 (2011).
[CrossRef] [PubMed]

Artoni, P.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Balasubramanian, N.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, D. L. Kwong, “Silicon nanowire sensor array using top–down CMOS technology, ” Sensor Actuat. A-Phys. 145–146, 207–213 (2008).
[CrossRef]

Bao, J.

M. Han, S. Liu, L. Zhang, C. Zhang, W. Tu, Z. Dai, J. Bao, “Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction,” ACS Appl. Mater. Interfaces 4(12), 6654–6660 (2012).
[CrossRef] [PubMed]

Borghese, F.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Buddharaju, K.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, D. L. Kwong, “Silicon nanowire sensor array using top–down CMOS technology, ” Sensor Actuat. A-Phys. 145–146, 207–213 (2008).
[CrossRef]

Busnaina, A. A.

J. G. Park, S. H. Lee, J. S. Ryu, Y. K. Hong, T. G. Kim, A. A. Busnaina, “Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning,” J. Electrochem. Soc. 153(9), G811–G814 (2006).
[CrossRef]

Chen, B.

Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, Y. Wang, “Nanodevices based on silicon nanowires,” Recent Pat. Nanotechnol. 3(1), 1–9 (2009).
[CrossRef] [PubMed]

Chen, K.

Y. Hu, R. R. Lapierre, M. Li, K. Chen, J. J. He, “Optical characteristics of GaAs nanowire solar cells,” J. Appl. Phys. 112(10), 104311 (2012).
[CrossRef]

Chen, K. I.

K. I. Chen, B. R. Li, Y. T. Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today 6(2), 131–154 (2011).
[CrossRef]

Chen, X.

S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sensor Actuat. B-Chem. 155(2), 592–597 (2011).
[CrossRef]

Chen, Y.

X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012).
[CrossRef]

Chen, Y. T.

K. I. Chen, B. R. Li, Y. T. Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today 6(2), 131–154 (2011).
[CrossRef]

Cheung, P. W.

C. D. Fung, P. W. Cheung, W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron. Dev. 33(1), 8–18 (1986).
[CrossRef]

Chiou, P. Y.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
[CrossRef]

Choi, S.

S. Choi, I. Park, Z. Hao, H. Y. N. Holman, A. P. Pisano, “Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors,” Appl. Phys., A Mater. Sci. Process. 107(2), 421–428 (2012).
[CrossRef]

Chou, J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Cui, Y.

Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett. 78(15), 2214–2216 (2001).
[CrossRef]

Cvelbar, U.

G. Filipič, U. Cvelbar, “Copper oxide nanowires: A review of growth,” Nanotechnology 23(19), 194001 (2012).
[CrossRef] [PubMed]

Dai, Z.

M. Han, S. Liu, L. Zhang, C. Zhang, W. Tu, Z. Dai, J. Bao, “Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction,” ACS Appl. Mater. Interfaces 4(12), 6654–6660 (2012).
[CrossRef] [PubMed]

de los Monteros, H. V.

Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012).
[CrossRef] [PubMed]

Denti, P.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Duan, X.

E. M. Freer, O. Grachev, X. Duan, S. Martin, D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis,” Nat. Nanotechnol. 5(7), 525–530 (2010).
[CrossRef] [PubMed]

Fang, Y.

Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, Y. Wang, “Nanodevices based on silicon nanowires,” Recent Pat. Nanotechnol. 3(1), 1–9 (2009).
[CrossRef] [PubMed]

Filipic, G.

G. Filipič, U. Cvelbar, “Copper oxide nanowires: A review of growth,” Nanotechnology 23(19), 194001 (2012).
[CrossRef] [PubMed]

Freer, E. M.

E. M. Freer, O. Grachev, X. Duan, S. Martin, D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis,” Nat. Nanotechnol. 5(7), 525–530 (2010).
[CrossRef] [PubMed]

Friedman, R. S.

S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, C. M. Lieber, “Scalable interconnection and integration of nanowire devices without registration,” Nano Lett. 4(5), 915–919 (2004).
[CrossRef]

Fung, C. D.

C. D. Fung, P. W. Cheung, W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron. Dev. 33(1), 8–18 (1986).
[CrossRef]

Gates, B.

Y. Sun, B. Gates, B. Mayers, Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[CrossRef]

Grachev, O.

E. M. Freer, O. Grachev, X. Duan, S. Martin, D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis,” Nat. Nanotechnol. 5(7), 525–530 (2010).
[CrossRef] [PubMed]

Gucciardi, P. G.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Gudiksen, M. S.

Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett. 78(15), 2214–2216 (2001).
[CrossRef]

Guffey, M. J.

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Guo, T.

X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012).
[CrossRef]

Han, M.

M. Han, S. Liu, L. Zhang, C. Zhang, W. Tu, Z. Dai, J. Bao, “Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction,” ACS Appl. Mater. Interfaces 4(12), 6654–6660 (2012).
[CrossRef] [PubMed]

Hao, Z.

S. Choi, I. Park, Z. Hao, H. Y. N. Holman, A. P. Pisano, “Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors,” Appl. Phys., A Mater. Sci. Process. 107(2), 421–428 (2012).
[CrossRef]

Hasselbrink, E. F.

B. J. Kirby, E. F. Hasselbrink., “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis 25(2), 187–202 (2004).
[CrossRef] [PubMed]

He, J. J.

Y. Hu, R. R. Lapierre, M. Li, K. Chen, J. J. He, “Optical characteristics of GaAs nanowire solar cells,” J. Appl. Phys. 112(10), 104311 (2012).
[CrossRef]

Holman, H. Y. N.

S. Choi, I. Park, Z. Hao, H. Y. N. Holman, A. P. Pisano, “Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors,” Appl. Phys., A Mater. Sci. Process. 107(2), 421–428 (2012).
[CrossRef]

Hong, Y. K.

J. G. Park, S. H. Lee, J. S. Ryu, Y. K. Hong, T. G. Kim, A. A. Busnaina, “Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning,” J. Electrochem. Soc. 153(9), G811–G814 (2006).
[CrossRef]

Hou, C.

Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012).
[CrossRef] [PubMed]

Hsu, H. Y.

A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
[CrossRef]

Hu, Y.

Y. Hu, R. R. Lapierre, M. Li, K. Chen, J. J. He, “Optical characteristics of GaAs nanowire solar cells,” J. Appl. Phys. 112(10), 104311 (2012).
[CrossRef]

Hui, S.

S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sensor Actuat. B-Chem. 155(2), 592–597 (2011).
[CrossRef]

Huo, D.

Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012).
[CrossRef] [PubMed]

Hyung, J. H.

D. I. Suh, S. Y. Lee, J. H. Hyung, T. H. Kim, S. K. Lee, “Multiple ZnO nanowires field-effect transistors,” J. Phys. Chem. C 112(4), 1276–1281 (2008).
[CrossRef]

Iacona, F.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Iatì, M. A.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Ino, K.

S. H. Lee, H. J. Lee, K. Ino, H. Shiku, T. Yao, T. Matsue, “Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires,” J. Phys. Chem. C 113(45), 19376–19381 (2009).
[CrossRef]

Irrera, A.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Jamshidi, A.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
[CrossRef]

Jia, C.

X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012).
[CrossRef]

Jia, W.

Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012).
[CrossRef] [PubMed]

Jin, S.

S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, C. M. Lieber, “Scalable interconnection and integration of nanowire devices without registration,” Nano Lett. 4(5), 915–919 (2004).
[CrossRef]

Jo, G.

Ju, S.

T. Lim, S. J. Ahn, M. Suh, O. K. Kwon, M. Meyyappan, S. Ju, “A nanowire-based shift register for display scan drivers,” Nanotechnology 22(40), 405203 (2011).
[CrossRef] [PubMed]

Jureller, J. E.

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Kim, T. G.

J. G. Park, S. H. Lee, J. S. Ryu, Y. K. Hong, T. G. Kim, A. A. Busnaina, “Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning,” J. Electrochem. Soc. 153(9), G811–G814 (2006).
[CrossRef]

Kim, T. H.

D. I. Suh, S. Y. Lee, J. H. Hyung, T. H. Kim, S. K. Lee, “Multiple ZnO nanowires field-effect transistors,” J. Phys. Chem. C 112(4), 1276–1281 (2008).
[CrossRef]

Kirby, B. J.

B. J. Kirby, E. F. Hasselbrink., “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis 25(2), 187–202 (2004).
[CrossRef] [PubMed]

Ko, W. H.

C. D. Fung, P. W. Cheung, W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron. Dev. 33(1), 8–18 (1986).
[CrossRef]

Kroener, M.

Z. Wang, M. Kroener, P. Woias, “Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis,” Sensor Actuat. A-Phys. 188, 417–426 (2012).
[CrossRef]

Kwon, O. K.

T. Lim, S. J. Ahn, M. Suh, O. K. Kwon, M. Meyyappan, S. Ju, “A nanowire-based shift register for display scan drivers,” Nanotechnology 22(40), 405203 (2011).
[CrossRef] [PubMed]

Kwong, D. L.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, D. L. Kwong, “Silicon nanowire sensor array using top–down CMOS technology, ” Sensor Actuat. A-Phys. 145–146, 207–213 (2008).
[CrossRef]

Lao, I. K.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, D. L. Kwong, “Silicon nanowire sensor array using top–down CMOS technology, ” Sensor Actuat. A-Phys. 145–146, 207–213 (2008).
[CrossRef]

Lapierre, R. R.

Y. Hu, R. R. Lapierre, M. Li, K. Chen, J. J. He, “Optical characteristics of GaAs nanowire solar cells,” J. Appl. Phys. 112(10), 104311 (2012).
[CrossRef]

Lau, A. N. K.

A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
[CrossRef]

Lauhon, L. J.

Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett. 78(15), 2214–2216 (2001).
[CrossRef]

Lee, H. J.

S. H. Lee, H. J. Lee, K. Ino, H. Shiku, T. Yao, T. Matsue, “Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires,” J. Phys. Chem. C 113(45), 19376–19381 (2009).
[CrossRef]

Lee, M. L.

J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012).
[PubMed]

Lee, S. H.

S. H. Lee, H. J. Lee, K. Ino, H. Shiku, T. Yao, T. Matsue, “Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires,” J. Phys. Chem. C 113(45), 19376–19381 (2009).
[CrossRef]

J. G. Park, S. H. Lee, J. S. Ryu, Y. K. Hong, T. G. Kim, A. A. Busnaina, “Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning,” J. Electrochem. Soc. 153(9), G811–G814 (2006).
[CrossRef]

Lee, S. K.

D. I. Suh, S. Y. Lee, J. H. Hyung, T. H. Kim, S. K. Lee, “Multiple ZnO nanowires field-effect transistors,” J. Phys. Chem. C 112(4), 1276–1281 (2008).
[CrossRef]

Lee, S. W.

Lee, S. Y.

D. I. Suh, S. Y. Lee, J. H. Hyung, T. H. Kim, S. K. Lee, “Multiple ZnO nanowires field-effect transistors,” J. Phys. Chem. C 112(4), 1276–1281 (2008).
[CrossRef]

Lee, T.

Lee, Y. G.

Lei, Y.

Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012).
[CrossRef] [PubMed]

Li, B. R.

K. I. Chen, B. R. Li, Y. T. Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today 6(2), 131–154 (2011).
[CrossRef]

Li, J.

Y. L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, “Automated nanomanipulation for nanodevice construction,” Nanotechnology 23(6), 065304 (2012).
[CrossRef] [PubMed]

J. Li, Y. Zhang, S. To, L. You, Y. Sun, “Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity,” ACS Nano 5(8), 6661–6668 (2011).
[CrossRef] [PubMed]

Li, M.

Y. Hu, R. R. Lapierre, M. Li, K. Chen, J. J. He, “Optical characteristics of GaAs nanowire solar cells,” J. Appl. Phys. 112(10), 104311 (2012).
[CrossRef]

Li, Q.

X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012).
[CrossRef]

Li, X.

J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012).
[PubMed]

Lieber, C. M.

F. Patolsky, G. Zheng, C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[CrossRef] [PubMed]

F. Patolsky, G. Zheng, C. M. Lieber, “Nanowire-based biosensors,” Anal. Chem. 78(13), 4260–4269 (2006).
[CrossRef] [PubMed]

S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, C. M. Lieber, “Scalable interconnection and integration of nanowire devices without registration,” Nano Lett. 4(5), 915–919 (2004).
[CrossRef]

Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett. 78(15), 2214–2216 (2001).
[CrossRef]

A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279(5348), 208–211 (1998).
[CrossRef] [PubMed]

Lim, T.

T. Lim, S. J. Ahn, M. Suh, O. K. Kwon, M. Meyyappan, S. Ju, “A nanowire-based shift register for display scan drivers,” Nanotechnology 22(40), 405203 (2011).
[CrossRef] [PubMed]

Liu, L.

X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012).
[CrossRef]

Liu, S.

M. Han, S. Liu, L. Zhang, C. Zhang, W. Tu, Z. Dai, J. Bao, “Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction,” ACS Appl. Mater. Interfaces 4(12), 6654–6660 (2012).
[CrossRef] [PubMed]

Liu, Y.

S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sensor Actuat. B-Chem. 155(2), 592–597 (2011).
[CrossRef]

Ma, D.

S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sensor Actuat. B-Chem. 155(2), 592–597 (2011).
[CrossRef]

Manuzzi, D.

Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012).
[CrossRef] [PubMed]

Maragò, O. M.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Martin, S.

E. M. Freer, O. Grachev, X. Duan, S. Martin, D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis,” Nat. Nanotechnol. 5(7), 525–530 (2010).
[CrossRef] [PubMed]

Matsue, T.

S. H. Lee, H. J. Lee, K. Ino, H. Shiku, T. Yao, T. Matsue, “Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires,” J. Phys. Chem. C 113(45), 19376–19381 (2009).
[CrossRef]

Mayers, B.

Y. Sun, B. Gates, B. Mayers, Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[CrossRef]

McAlpine, M. C.

S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, C. M. Lieber, “Scalable interconnection and integration of nanowire devices without registration,” Nano Lett. 4(5), 915–919 (2004).
[CrossRef]

Meyyappan, M.

T. Lim, S. J. Ahn, M. Suh, O. K. Kwon, M. Meyyappan, S. Ju, “A nanowire-based shift register for display scan drivers,” Nanotechnology 22(40), 405203 (2011).
[CrossRef] [PubMed]

Mohseni, P. K.

J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012).
[PubMed]

Montgomery, K. H.

J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012).
[PubMed]

Morales, A. M.

A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279(5348), 208–211 (1998).
[CrossRef] [PubMed]

Ohta, A. T.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
[CrossRef]

Park, I.

S. Choi, I. Park, Z. Hao, H. Y. N. Holman, A. P. Pisano, “Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors,” Appl. Phys., A Mater. Sci. Process. 107(2), 421–428 (2012).
[CrossRef]

Park, J. G.

J. G. Park, S. H. Lee, J. S. Ryu, Y. K. Hong, T. G. Kim, A. A. Busnaina, “Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning,” J. Electrochem. Soc. 153(9), G811–G814 (2006).
[CrossRef]

Patolsky, F.

F. Patolsky, G. Zheng, C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[CrossRef] [PubMed]

F. Patolsky, G. Zheng, C. M. Lieber, “Nanowire-based biosensors,” Anal. Chem. 78(13), 4260–4269 (2006).
[CrossRef] [PubMed]

Pauzauskie, P. J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Pelton, M.

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Phan, H. L.

A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
[CrossRef]

Pisano, A. P.

S. Choi, I. Park, Z. Hao, H. Y. N. Holman, A. P. Pisano, “Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors,” Appl. Phys., A Mater. Sci. Process. 107(2), 421–428 (2012).
[CrossRef]

Priolo, F.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Rogers, J. A.

J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012).
[PubMed]

Ryu, J. S.

J. G. Park, S. H. Lee, J. S. Ryu, Y. K. Hong, T. G. Kim, A. A. Busnaina, “Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning,” J. Electrochem. Soc. 153(9), G811–G814 (2006).
[CrossRef]

Saija, R.

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Scherer, N. F.

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Schuck, P. J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Sha, J.

Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, Y. Wang, “Nanodevices based on silicon nanowires,” Recent Pat. Nanotechnol. 3(1), 1–9 (2009).
[CrossRef] [PubMed]

Sherwood, S. W.

A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
[CrossRef]

Shiku, H.

S. H. Lee, H. J. Lee, K. Ino, H. Shiku, T. Yao, T. Matsue, “Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires,” J. Phys. Chem. C 113(45), 19376–19381 (2009).
[CrossRef]

Shin, J. C.

J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012).
[PubMed]

Singh, N.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, D. L. Kwong, “Silicon nanowire sensor array using top–down CMOS technology, ” Sensor Actuat. A-Phys. 145–146, 207–213 (2008).
[CrossRef]

Stumbo, D. P.

E. M. Freer, O. Grachev, X. Duan, S. Martin, D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis,” Nat. Nanotechnol. 5(7), 525–530 (2010).
[CrossRef] [PubMed]

Su, L.

Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012).
[CrossRef] [PubMed]

Su, Y.

X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012).
[CrossRef]

Suh, D. I.

D. I. Suh, S. Y. Lee, J. H. Hyung, T. H. Kim, S. K. Lee, “Multiple ZnO nanowires field-effect transistors,” J. Phys. Chem. C 112(4), 1276–1281 (2008).
[CrossRef]

Suh, M.

T. Lim, S. J. Ahn, M. Suh, O. K. Kwon, M. Meyyappan, S. Ju, “A nanowire-based shift register for display scan drivers,” Nanotechnology 22(40), 405203 (2011).
[CrossRef] [PubMed]

Sun, Y.

Y. L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, “Automated nanomanipulation for nanodevice construction,” Nanotechnology 23(6), 065304 (2012).
[CrossRef] [PubMed]

J. Li, Y. Zhang, S. To, L. You, Y. Sun, “Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity,” ACS Nano 5(8), 6661–6668 (2011).
[CrossRef] [PubMed]

Y. Sun, B. Gates, B. Mayers, Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[CrossRef]

Sweet, J.

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Tao, B.

S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sensor Actuat. B-Chem. 155(2), 592–597 (2011).
[CrossRef]

To, S.

Y. L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, “Automated nanomanipulation for nanodevice construction,” Nanotechnology 23(6), 065304 (2012).
[CrossRef] [PubMed]

J. Li, Y. Zhang, S. To, L. You, Y. Sun, “Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity,” ACS Nano 5(8), 6661–6668 (2011).
[CrossRef] [PubMed]

Tomasulo, S.

J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012).
[PubMed]

Tu, W.

M. Han, S. Liu, L. Zhang, C. Zhang, W. Tu, Z. Dai, J. Bao, “Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction,” ACS Appl. Mater. Interfaces 4(12), 6654–6660 (2012).
[CrossRef] [PubMed]

Vayssieres, L.

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. 15(5), 464–466 (2003).
[CrossRef]

Wan, Y.

Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, Y. Wang, “Nanodevices based on silicon nanowires,” Recent Pat. Nanotechnol. 3(1), 1–9 (2009).
[CrossRef] [PubMed]

Wang, J.

Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett. 78(15), 2214–2216 (2001).
[CrossRef]

Wang, Y.

Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, Y. Wang, “Nanodevices based on silicon nanowires,” Recent Pat. Nanotechnol. 3(1), 1–9 (2009).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, M. Kroener, P. Woias, “Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis,” Sensor Actuat. A-Phys. 188, 417–426 (2012).
[CrossRef]

Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, Y. Wang, “Nanodevices based on silicon nanowires,” Recent Pat. Nanotechnol. 3(1), 1–9 (2009).
[CrossRef] [PubMed]

Wei, M.

X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012).
[CrossRef]

Whang, D.

S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, C. M. Lieber, “Scalable interconnection and integration of nanowire devices without registration,” Nano Lett. 4(5), 915–919 (2004).
[CrossRef]

Woias, P.

Z. Wang, M. Kroener, P. Woias, “Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis,” Sensor Actuat. A-Phys. 188, 417–426 (2012).
[CrossRef]

Wu, M. C.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
[CrossRef]

Wu, Y.

S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, C. M. Lieber, “Scalable interconnection and integration of nanowire devices without registration,” Nano Lett. 4(5), 915–919 (2004).
[CrossRef]

Xia, Y.

Y. Sun, B. Gates, B. Mayers, Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[CrossRef]

Xu, H.

S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sensor Actuat. B-Chem. 155(2), 592–597 (2011).
[CrossRef]

Yan, Z.

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

Yang, J. M.

A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
[CrossRef]

Yang, P.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Yao, T.

S. H. Lee, H. J. Lee, K. Ino, H. Shiku, T. Yao, T. Matsue, “Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires,” J. Phys. Chem. C 113(45), 19376–19381 (2009).
[CrossRef]

Ye, X.

Y. L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, “Automated nanomanipulation for nanodevice construction,” Nanotechnology 23(6), 065304 (2012).
[CrossRef] [PubMed]

You, L.

Y. L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, “Automated nanomanipulation for nanodevice construction,” Nanotechnology 23(6), 065304 (2012).
[CrossRef] [PubMed]

J. Li, Y. Zhang, S. To, L. You, Y. Sun, “Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity,” ACS Nano 5(8), 6661–6668 (2011).
[CrossRef] [PubMed]

Yu, K. J.

J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012).
[PubMed]

Zhang, C.

M. Han, S. Liu, L. Zhang, C. Zhang, W. Tu, Z. Dai, J. Bao, “Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction,” ACS Appl. Mater. Interfaces 4(12), 6654–6660 (2012).
[CrossRef] [PubMed]

Zhang, J.

S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sensor Actuat. B-Chem. 155(2), 592–597 (2011).
[CrossRef]

Zhang, L.

M. Han, S. Liu, L. Zhang, C. Zhang, W. Tu, Z. Dai, J. Bao, “Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction,” ACS Appl. Mater. Interfaces 4(12), 6654–6660 (2012).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012).
[CrossRef]

Zhang, Y.

Y. L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, “Automated nanomanipulation for nanodevice construction,” Nanotechnology 23(6), 065304 (2012).
[CrossRef] [PubMed]

Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012).
[CrossRef] [PubMed]

J. Li, Y. Zhang, S. To, L. You, Y. Sun, “Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity,” ACS Nano 5(8), 6661–6668 (2011).
[CrossRef] [PubMed]

Zhang, Y. L.

Y. L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, “Automated nanomanipulation for nanodevice construction,” Nanotechnology 23(6), 065304 (2012).
[CrossRef] [PubMed]

Zheng, G.

F. Patolsky, G. Zheng, C. M. Lieber, “Nanowire-based biosensors,” Anal. Chem. 78(13), 4260–4269 (2006).
[CrossRef] [PubMed]

F. Patolsky, G. Zheng, C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[CrossRef] [PubMed]

ACS Appl. Mater. Interfaces

M. Han, S. Liu, L. Zhang, C. Zhang, W. Tu, Z. Dai, J. Bao, “Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction,” ACS Appl. Mater. Interfaces 4(12), 6654–6660 (2012).
[CrossRef] [PubMed]

ACS Nano

J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012).
[PubMed]

J. Li, Y. Zhang, S. To, L. You, Y. Sun, “Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity,” ACS Nano 5(8), 6661–6668 (2011).
[CrossRef] [PubMed]

Adv. Mater.

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. 15(5), 464–466 (2003).
[CrossRef]

Anal. Chem.

F. Patolsky, G. Zheng, C. M. Lieber, “Nanowire-based biosensors,” Anal. Chem. 78(13), 4260–4269 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett. 78(15), 2214–2216 (2001).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

S. Choi, I. Park, Z. Hao, H. Y. N. Holman, A. P. Pisano, “Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors,” Appl. Phys., A Mater. Sci. Process. 107(2), 421–428 (2012).
[CrossRef]

Biosens. Bioelectron.

Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012).
[CrossRef] [PubMed]

Electrophoresis

B. J. Kirby, E. F. Hasselbrink., “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis 25(2), 187–202 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007).
[CrossRef]

IEEE Trans. Electron. Dev.

C. D. Fung, P. W. Cheung, W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron. Dev. 33(1), 8–18 (1986).
[CrossRef]

J. Appl. Phys.

Y. Hu, R. R. Lapierre, M. Li, K. Chen, J. J. He, “Optical characteristics of GaAs nanowire solar cells,” J. Appl. Phys. 112(10), 104311 (2012).
[CrossRef]

J. Electrochem. Soc.

J. G. Park, S. H. Lee, J. S. Ryu, Y. K. Hong, T. G. Kim, A. A. Busnaina, “Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning,” J. Electrochem. Soc. 153(9), G811–G814 (2006).
[CrossRef]

J. Exp. Nanosci.

X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012).
[CrossRef]

J. Phys. Chem. C

D. I. Suh, S. Y. Lee, J. H. Hyung, T. H. Kim, S. K. Lee, “Multiple ZnO nanowires field-effect transistors,” J. Phys. Chem. C 112(4), 1276–1281 (2008).
[CrossRef]

S. H. Lee, H. J. Lee, K. Ino, H. Shiku, T. Yao, T. Matsue, “Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires,” J. Phys. Chem. C 113(45), 19376–19381 (2009).
[CrossRef]

Nano Lett.

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[CrossRef] [PubMed]

A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011).
[CrossRef] [PubMed]

Y. Sun, B. Gates, B. Mayers, Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
[CrossRef]

S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, C. M. Lieber, “Scalable interconnection and integration of nanowire devices without registration,” Nano Lett. 4(5), 915–919 (2004).
[CrossRef]

Nano Today

K. I. Chen, B. R. Li, Y. T. Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today 6(2), 131–154 (2011).
[CrossRef]

Nanotechnology

G. Filipič, U. Cvelbar, “Copper oxide nanowires: A review of growth,” Nanotechnology 23(19), 194001 (2012).
[CrossRef] [PubMed]

T. Lim, S. J. Ahn, M. Suh, O. K. Kwon, M. Meyyappan, S. Ju, “A nanowire-based shift register for display scan drivers,” Nanotechnology 22(40), 405203 (2011).
[CrossRef] [PubMed]

Y. L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, “Automated nanomanipulation for nanodevice construction,” Nanotechnology 23(6), 065304 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol.

E. M. Freer, O. Grachev, X. Duan, S. Martin, D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis,” Nat. Nanotechnol. 5(7), 525–530 (2010).
[CrossRef] [PubMed]

Nat. Photonics

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Nat. Protoc.

F. Patolsky, G. Zheng, C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006).
[CrossRef] [PubMed]

Opt. Express

Recent Pat. Nanotechnol.

Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, Y. Wang, “Nanodevices based on silicon nanowires,” Recent Pat. Nanotechnol. 3(1), 1–9 (2009).
[CrossRef] [PubMed]

Science

A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279(5348), 208–211 (1998).
[CrossRef] [PubMed]

Sensor Actuat. A-Phys.

A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, D. L. Kwong, “Silicon nanowire sensor array using top–down CMOS technology, ” Sensor Actuat. A-Phys. 145–146, 207–213 (2008).
[CrossRef]

Z. Wang, M. Kroener, P. Woias, “Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis,” Sensor Actuat. A-Phys. 188, 417–426 (2012).
[CrossRef]

Sensor Actuat. B-Chem.

S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sensor Actuat. B-Chem. 155(2), 592–597 (2011).
[CrossRef]

Supplementary Material (2)

» Media 1: MP4 (4307 KB)     
» Media 2: MP4 (3199 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram for manipulating nanowires using ODEP force. An electric field was generated by inputting AC signals to the upper and lower plate of the chip. The resistance of the photoconductive materials drops by 4-5 orders of magnitude upon illumination, and this property was employed to form a non-uniform electric field by projecting light on the photoconductive materials using a projector. The interaction between this non-uniform electric field and the dipoles in the nanowires was used to generate the ODEP force. The nanowires were manipulated by moving the light source.

Fig. 2
Fig. 2

Schematic diagram of the nanowire sensor assembly procedure. (a) Solution containing the nanowires was added to the ODEP chip, and the nanowires were randomly distributed. (b) The AC signal was inputted to the ITO conductive layers on the upper and lower plates, attracting the nanowires to be assembled with the ODEP force. (c) The nanowires were dynamically manipulated and moved next to the metal electrodes to be connected. (d) The AC signals were switched onto both ends of the electrodes to generate the DEP force to attract the nanowires onto the electrode. (e) The upper plate was removed after the solution evaporated, and the nanowires were fixed by depositing platinum at both ends using a FIB system. (f) The metal electrodes were protected by covering them with photoresist (SU-8), exposing only the nanowires for sensing.

Fig. 3
Fig. 3

Schematic illustration of the ODEP platform set-up. A commercially available liquid crystal projector was used as the light source. An objective lens was used to collect and collimate the projector light onto the photoconductive layer, and two signal generators were connected to the ITO conductive layers on the upper and lower plates and to the metal electrodes on the substrate. The CCD camera above the chip was used to observe and record the manipulation in real time. The projector, together with a PC and animation software, was used to output optical images at different positions to manipulate the nanowires.

Fig. 4
Fig. 4

Procedure diagram for connecting a single nanowire. (a) The nanowires were lying horizontally inside the chip. (b) An AC signal was inputted to the chip, and the nanowires stood up vertically. A light spot was projected to generate the ODEP force. (c) The ODEP force induced by this light spot was used to attract the nanowires. (d) The nanowires were moved toward the electrodes by moving the light spot. (e) Each nanowire was moved next to the metal electrode to be connected. (f) AC signals were switched onto the metal electrode, and a DEP force was generated at both ends of the electrode. The labels “Signal on/off” indicate whether the applied AC voltage was turned on or off.

Fig. 5
Fig. 5

(a) A continuous movie showing the process connecting a single nanowire to multiple pairs of adjacent electrodes (Media 1). (b) Continuous filming of the process sequentially interconnecting a single pair of electrodes with multiple nanowires. The method can control the number of nanowires bridging the space between electrodes and can also connect single nanowires to multiple pairs of electrodes (Media 2).

Fig. 6
Fig. 6

Percentage of nanowires adhering to the substrate at various DI water-to-IPA ratios. Fewer nanowires adhere to the substrate with an increasing proportion of DI water. In addition, the problem of nanowire adherence to the substrate can be further improved after oxygen plasma treatment of the SiNX substrate.

Fig. 7
Fig. 7

(a) SEM images of assembled nanowire sensors. After connecting the nanowires across the two ends of the electrode, platinum was patterned at both ends of the nanowires using an FIB system. (b) IV characteristic curve of the nanowire sensors before platinum patterning; the average coefficient of conductance variation was 82% (n = 8). (c) IV characteristic curve of nanowire sensors with patterned platinum; the average coefficient of conductance variation was 12% (n = 5). (d) After 30 days of operation, the signals of the nanowires were still stable, and the average coefficient of conductance variation was 10.82%.

Fig. 8
Fig. 8

Detection of solutions of different pH values using assembled nanowire sensors. The figure shows that under a fixed voltage, the current passing through the nanowire decreased with the increasing pH value of the solution. The inset shows that the conductance of the nanowire sensor was decreased with increasing pH values.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F D E P = π r 2 l 6 ε m R e [ f c m ] E 2
f c m = ε w i r e * ε m * ε m *
ε * = ε j ( σ / ω )

Metrics