Abstract

An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U. S. Patent 5, 194 847, March 16, 1993.
  2. H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett. 38(6), 872–874 (2013).
    [CrossRef] [PubMed]
  3. J. Park, W. Lee, H. F. Taylor, “A fiber optic intrusion sensor with the configuration of an optical time domain reflectometer using coherent interference of Rayleigh backscattering,” Proc. SPIE 3555, 49–56 (1998).
    [CrossRef]
  4. K. N. Choi, H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectrometry,” IEEE Photon. Technol. Lett. 15(3), 386–388 (2003).
    [CrossRef]
  5. J. C. Juarez, E. W. Maier, K. N. Choi, H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [CrossRef]
  6. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, M. Gonzalez-Herraez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
    [CrossRef]
  7. Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens. 2(2), 97–117 (2012).
    [CrossRef]
  8. Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, Z. Zhou, “Long-distance fiber-optic Φ-OTDR intrusion sensing system,” OFS 2010. Proc. SPIE 7503(75031O), 75031O (2009).
    [CrossRef]
  9. H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazão, M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order raman amplification for distributed vibration sensing over> 100 km,” J. Lightwave Technol. 8(32), 1510–1518 (2014).
    [CrossRef]
  10. Y. Lu, T. Zhu, L. Chen, X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 27, 3243–3249 (2010).
  11. Z. Qin, L. Chen, X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24(7), 542–544 (2012).
    [CrossRef]
  12. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).
  13. I. Daubechies, Ten lecture on wavelets, CBMS series, Philadelphia: SIMA,1992.

2014 (1)

H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazão, M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order raman amplification for distributed vibration sensing over> 100 km,” J. Lightwave Technol. 8(32), 1510–1518 (2014).
[CrossRef]

2013 (2)

2012 (2)

Z. Qin, L. Chen, X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24(7), 542–544 (2012).
[CrossRef]

Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens. 2(2), 97–117 (2012).
[CrossRef]

2010 (1)

Y. Lu, T. Zhu, L. Chen, X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 27, 3243–3249 (2010).

2009 (1)

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, Z. Zhou, “Long-distance fiber-optic Φ-OTDR intrusion sensing system,” OFS 2010. Proc. SPIE 7503(75031O), 75031O (2009).
[CrossRef]

2005 (1)

2003 (1)

K. N. Choi, H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectrometry,” IEEE Photon. Technol. Lett. 15(3), 386–388 (2003).
[CrossRef]

1998 (1)

J. Park, W. Lee, H. F. Taylor, “A fiber optic intrusion sensor with the configuration of an optical time domain reflectometer using coherent interference of Rayleigh backscattering,” Proc. SPIE 3555, 49–56 (1998).
[CrossRef]

Bao, X.

Z. Qin, L. Chen, X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24(7), 542–544 (2012).
[CrossRef]

Y. Lu, T. Zhu, L. Chen, X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 27, 3243–3249 (2010).

Chen, L.

Z. Qin, L. Chen, X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24(7), 542–544 (2012).
[CrossRef]

Y. Lu, T. Zhu, L. Chen, X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 27, 3243–3249 (2010).

Choi, K. N.

J. C. Juarez, E. W. Maier, K. N. Choi, H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
[CrossRef]

K. N. Choi, H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectrometry,” IEEE Photon. Technol. Lett. 15(3), 386–388 (2003).
[CrossRef]

Corredera, P.

Filograno, M. L.

H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazão, M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order raman amplification for distributed vibration sensing over> 100 km,” J. Lightwave Technol. 8(32), 1510–1518 (2014).
[CrossRef]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, M. Gonzalez-Herraez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
[CrossRef]

Frazao, O.

Frazão, O.

H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazão, M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order raman amplification for distributed vibration sensing over> 100 km,” J. Lightwave Technol. 8(32), 1510–1518 (2014).
[CrossRef]

H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett. 38(6), 872–874 (2013).
[CrossRef] [PubMed]

Gonzalez-Herraez, M.

Gonzalez-Herráez, M.

H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazão, M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order raman amplification for distributed vibration sensing over> 100 km,” J. Lightwave Technol. 8(32), 1510–1518 (2014).
[CrossRef]

González-Herráez, M.

Juarez, J. C.

Lee, W.

J. Park, W. Lee, H. F. Taylor, “A fiber optic intrusion sensor with the configuration of an optical time domain reflectometer using coherent interference of Rayleigh backscattering,” Proc. SPIE 3555, 49–56 (1998).
[CrossRef]

Lu, Y.

Y. Lu, T. Zhu, L. Chen, X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 27, 3243–3249 (2010).

Luo, J.

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, Z. Zhou, “Long-distance fiber-optic Φ-OTDR intrusion sensing system,” OFS 2010. Proc. SPIE 7503(75031O), 75031O (2009).
[CrossRef]

Luo, X. D.

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, Z. Zhou, “Long-distance fiber-optic Φ-OTDR intrusion sensing system,” OFS 2010. Proc. SPIE 7503(75031O), 75031O (2009).
[CrossRef]

Maier, E. W.

Martin-Lopez, S.

Martín-López, S.

H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazão, M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order raman amplification for distributed vibration sensing over> 100 km,” J. Lightwave Technol. 8(32), 1510–1518 (2014).
[CrossRef]

Martins, H. F.

Park, J.

J. Park, W. Lee, H. F. Taylor, “A fiber optic intrusion sensor with the configuration of an optical time domain reflectometer using coherent interference of Rayleigh backscattering,” Proc. SPIE 3555, 49–56 (1998).
[CrossRef]

Qin, Z.

Z. Qin, L. Chen, X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24(7), 542–544 (2012).
[CrossRef]

Ran, Z. L.

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, Z. Zhou, “Long-distance fiber-optic Φ-OTDR intrusion sensing system,” OFS 2010. Proc. SPIE 7503(75031O), 75031O (2009).
[CrossRef]

Rao, Y. J.

Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens. 2(2), 97–117 (2012).
[CrossRef]

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, Z. Zhou, “Long-distance fiber-optic Φ-OTDR intrusion sensing system,” OFS 2010. Proc. SPIE 7503(75031O), 75031O (2009).
[CrossRef]

Salgado, P.

Taylor, H. F.

J. C. Juarez, E. W. Maier, K. N. Choi, H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
[CrossRef]

K. N. Choi, H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectrometry,” IEEE Photon. Technol. Lett. 15(3), 386–388 (2003).
[CrossRef]

J. Park, W. Lee, H. F. Taylor, “A fiber optic intrusion sensor with the configuration of an optical time domain reflectometer using coherent interference of Rayleigh backscattering,” Proc. SPIE 3555, 49–56 (1998).
[CrossRef]

Yue, J. F.

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, Z. Zhou, “Long-distance fiber-optic Φ-OTDR intrusion sensing system,” OFS 2010. Proc. SPIE 7503(75031O), 75031O (2009).
[CrossRef]

Zhou, Z.

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, Z. Zhou, “Long-distance fiber-optic Φ-OTDR intrusion sensing system,” OFS 2010. Proc. SPIE 7503(75031O), 75031O (2009).
[CrossRef]

Zhu, T.

Y. Lu, T. Zhu, L. Chen, X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 27, 3243–3249 (2010).

IEEE Photon. Technol. Lett. (2)

K. N. Choi, H. F. Taylor, “Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectrometry,” IEEE Photon. Technol. Lett. 15(3), 386–388 (2003).
[CrossRef]

Z. Qin, L. Chen, X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photon. Technol. Lett. 24(7), 542–544 (2012).
[CrossRef]

J. Lightwave Technol. (4)

H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazão, M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order raman amplification for distributed vibration sensing over> 100 km,” J. Lightwave Technol. 8(32), 1510–1518 (2014).
[CrossRef]

Y. Lu, T. Zhu, L. Chen, X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 27, 3243–3249 (2010).

J. C. Juarez, E. W. Maier, K. N. Choi, H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
[CrossRef]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, M. Gonzalez-Herraez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
[CrossRef]

OFS 2010. Proc. SPIE (1)

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, Z. Zhou, “Long-distance fiber-optic Φ-OTDR intrusion sensing system,” OFS 2010. Proc. SPIE 7503(75031O), 75031O (2009).
[CrossRef]

Opt. Lett. (1)

Photon. Sens. (1)

Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens. 2(2), 97–117 (2012).
[CrossRef]

Proc. SPIE (1)

J. Park, W. Lee, H. F. Taylor, “A fiber optic intrusion sensor with the configuration of an optical time domain reflectometer using coherent interference of Rayleigh backscattering,” Proc. SPIE 3555, 49–56 (1998).
[CrossRef]

Other (3)

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).

I. Daubechies, Ten lecture on wavelets, CBMS series, Philadelphia: SIMA,1992.

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U. S. Patent 5, 194 847, March 16, 1993.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of Φ-OTDR system with 1-st BRA and heterodyne detection.

Fig. 2
Fig. 2

(a) The optical spectrum (observed at the output of BPF2) and (b) RS curve when PR = 0 and Pp = −19.4dBm.

Fig. 3
Fig. 3

RS curves in different power combinations of probe pulses and Raman pump. The red lines are the simulated RS curves.

Fig. 4
Fig. 4

Auto-spectrum of 97.51km when the driven signal with different frequencies are applied.

Fig. 5
Fig. 5

(a) Auto-power spectrum of vibration along the fiber when the vibration frequency at 97.51km is 375Hz. (b) Amplitude at 375Hz of each position. The sub graph in (b) is the enlarged part around 97.51km.

Fig. 6
Fig. 6

(a) Steel pipeline with optical fiber cable attached. (b) Original time series (blue line) and slowly varying noises (red line) when chiseling the pipe. (c) Extracted disturbance series when chiseling on the pipe. The red * represent the peak of the impulses generated by chiseling the pipe.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d P P dz = g R P R P P α P P P
ξ d P R dz = ω R ω S g R P R P P α R P R

Metrics