Abstract

Nanomechanical resonators provide an unparalleled mass sensitivity sufficient to detect single biomolecules, viruses and nanoparticles. In this work we propose a scheme for mass sensing based on the hybrid opto-electromechanical system, where a mechanical resonator is coupled to an optical cavity and a microwave cavity simultaneously. When the two cavities are driven by two pump fields with proper frequencies and powers, a weak probe field is used to scan across the optical cavity resonance frequency. The mass of a single baculovirus landing onto the surface of the mechanical resonator can be measured by tracking the resonance frequency shift in the probe transmission spectrum before and after the deposition. We also propose a nonlinear mass sensor based on the measurement of the four-wave mixing (FWM) spectrum, which can be used to weigh a single 20-nm-diameter gold nanoparticle with sub-femtogram resolution.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. C. Schwab, M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
    [CrossRef]
  2. J. L. Arlett, E. B. Myers, M.L. Roukes, “Comparative advantages of mechanical biosensors,” Nature Nanotech. 6, 203–215 (2011).
    [CrossRef]
  3. K. L. Ekinci, Y. T. Tang, M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
    [CrossRef]
  4. N. V. Lavrik, P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
    [CrossRef]
  5. B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004).
    [CrossRef]
  6. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
    [CrossRef] [PubMed]
  7. J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012).
    [CrossRef]
  8. A. Gupta, D. Akin, R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett. 84, 1976–1978 (2004).
    [CrossRef]
  9. M. Li, H. X. Tang, M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotech. 2, 114–120 (2007).
    [CrossRef]
  10. X. L. Feng, R. He, P. D. Yang, M. L. Roukes, “Very high frequency silicon nanowire electromechanical resonators,” Nano Lett. 7, 1953–1959 (2007).
    [CrossRef]
  11. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotech. 4, 445–450 (2009).
    [CrossRef]
  12. E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010).
    [CrossRef]
  13. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007).
    [CrossRef]
  14. S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
    [CrossRef]
  15. B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8, 3735–3738 (2008).
    [CrossRef] [PubMed]
  16. K. Jensen, K. Kim, A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotech. 3, 533–537 (2008).
    [CrossRef]
  17. F. Liu, M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors 13, 146–147 (2013).
    [CrossRef]
  18. F. Liu, S. Alaie, Z. C. Leseman, M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21, 19555–19567 (2013).
    [CrossRef] [PubMed]
  19. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
    [CrossRef] [PubMed]
  20. J.-J. Li, K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012).
    [CrossRef]
  21. J.-J. Li, K.-D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013).
    [CrossRef]
  22. T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [CrossRef] [PubMed]
  23. F. Marquardt, S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).
    [CrossRef]
  24. M. Aspelmeyer, P. Meystre, K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
    [CrossRef]
  25. S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724–727 (2009).
    [CrossRef]
  26. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [CrossRef] [PubMed]
  27. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
    [CrossRef]
  28. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011).
    [CrossRef]
  29. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
    [CrossRef] [PubMed]
  30. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009).
    [CrossRef]
  31. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
    [CrossRef]
  32. J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011).
    [CrossRef]
  33. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012).
    [CrossRef]
  34. T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013).
    [CrossRef]
  35. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
    [CrossRef]
  36. C. A. Regal, K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys. Conf. Ser. 264, 012025 (2011).
    [CrossRef]
  37. X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3, 2943 (2013).
    [CrossRef] [PubMed]
  38. K. N. Qu, G. S. Agarwal, “Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems,” Phys. Rev. A 87, 031802(R) (2013).
    [CrossRef]
  39. J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
    [CrossRef]
  40. C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
    [CrossRef]
  41. H. Xiong, L.-G. Si, A.-S. Zheng, X. X. Yang, Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
    [CrossRef]
  42. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  43. C. W. Gardiner, P. Zoller, Quantum Noise (Springer) (2004).
  44. T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
    [CrossRef] [PubMed]
  45. S. Huang, G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010).
    [CrossRef]
  46. B. Ilic, Y. Yang, H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett. 85, 2604–2606 (2004).
    [CrossRef]
  47. X. Sun, J. Zheng, M. Poot, C. W. Wong, H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012).
    [CrossRef] [PubMed]
  48. J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).
  49. J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012).
    [CrossRef] [PubMed]
  50. A. Boisen, “Nanoelectromechanical systems: Mass spec goes nanomechanical,” Nature Nanotech. 4, 404–405 (2009).
    [CrossRef]
  51. Z. Yie, M. A. Zielke, C. B. Burgner, K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
    [CrossRef]
  52. A. N. Cleland, M. L. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys. 92, 2758–2769 (2002).
    [CrossRef]

2014 (2)

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[CrossRef]

2013 (7)

T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013).
[CrossRef]

F. Liu, S. Alaie, Z. C. Leseman, M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21, 19555–19567 (2013).
[CrossRef] [PubMed]

F. Liu, M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors 13, 146–147 (2013).
[CrossRef]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[CrossRef] [PubMed]

J.-J. Li, K.-D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013).
[CrossRef]

X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3, 2943 (2013).
[CrossRef] [PubMed]

K. N. Qu, G. S. Agarwal, “Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems,” Phys. Rev. A 87, 031802(R) (2013).
[CrossRef]

2012 (7)

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012).
[CrossRef]

M. Aspelmeyer, P. Meystre, K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
[CrossRef]

J.-J. Li, K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012).
[CrossRef]

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012).
[CrossRef]

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012).
[CrossRef] [PubMed]

H. Xiong, L.-G. Si, A.-S. Zheng, X. X. Yang, Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

X. Sun, J. Zheng, M. Poot, C. W. Wong, H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012).
[CrossRef] [PubMed]

2011 (7)

C. A. Regal, K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys. Conf. Ser. 264, 012025 (2011).
[CrossRef]

Z. Yie, M. A. Zielke, C. B. Burgner, K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

J. L. Arlett, E. B. Myers, M.L. Roukes, “Comparative advantages of mechanical biosensors,” Nature Nanotech. 6, 203–215 (2011).
[CrossRef]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[CrossRef]

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011).
[CrossRef]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011).
[CrossRef]

2010 (3)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010).
[CrossRef]

S. Huang, G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010).
[CrossRef]

2009 (5)

A. Boisen, “Nanoelectromechanical systems: Mass spec goes nanomechanical,” Nature Nanotech. 4, 404–405 (2009).
[CrossRef]

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotech. 4, 445–450 (2009).
[CrossRef]

F. Marquardt, S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).
[CrossRef]

S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724–727 (2009).
[CrossRef]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009).
[CrossRef]

2008 (5)

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[CrossRef]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[CrossRef]

T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8, 3735–3738 (2008).
[CrossRef] [PubMed]

K. Jensen, K. Kim, A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotech. 3, 533–537 (2008).
[CrossRef]

2007 (3)

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007).
[CrossRef]

M. Li, H. X. Tang, M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotech. 2, 114–120 (2007).
[CrossRef]

X. L. Feng, R. He, P. D. Yang, M. L. Roukes, “Very high frequency silicon nanowire electromechanical resonators,” Nano Lett. 7, 1953–1959 (2007).
[CrossRef]

2006 (2)

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef] [PubMed]

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

2005 (1)

K. C. Schwab, M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[CrossRef]

2004 (5)

B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004).
[CrossRef]

K. L. Ekinci, Y. T. Tang, M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[CrossRef]

A. Gupta, D. Akin, R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett. 84, 1976–1978 (2004).
[CrossRef]

B. Ilic, Y. Yang, H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett. 85, 2604–2606 (2004).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

2003 (1)

N. V. Lavrik, P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[CrossRef]

2002 (1)

A. N. Cleland, M. L. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys. 92, 2758–2769 (2002).
[CrossRef]

Agarwal, G. S.

K. N. Qu, G. S. Agarwal, “Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems,” Phys. Rev. A 87, 031802(R) (2013).
[CrossRef]

S. Huang, G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010).
[CrossRef]

Aguasca, A.

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8, 3735–3738 (2008).
[CrossRef] [PubMed]

Akin, D.

A. Gupta, D. Akin, R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett. 84, 1976–1978 (2004).
[CrossRef]

Alaie, S.

Alegre, T. P.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011).
[CrossRef]

Allman, M. S.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011).
[CrossRef]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

Andrews, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[CrossRef]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

Arlett, J. L.

J. L. Arlett, E. B. Myers, M.L. Roukes, “Comparative advantages of mechanical biosensors,” Nature Nanotech. 6, 203–215 (2011).
[CrossRef]

Ashhab, S.

X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3, 2943 (2013).
[CrossRef] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, P. Meystre, K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
[CrossRef]

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011).
[CrossRef]

S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724–727 (2009).
[CrossRef]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[CrossRef]

Atsumi, H.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

Babcock, K.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007).
[CrossRef]

Bachtold, A.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012).
[CrossRef]

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8, 3735–3738 (2008).
[CrossRef] [PubMed]

Bashir, R.

A. Gupta, D. Akin, R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett. 84, 1976–1978 (2004).
[CrossRef]

Belcher, A. M.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

Bhati, S. N.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

Boisen, A.

A. Boisen, “Nanoelectromechanical systems: Mass spec goes nanomechanical,” Nature Nanotech. 4, 404–405 (2009).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Briant, T.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

Burg, T. P.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007).
[CrossRef]

Burgner, C. B.

Z. Yie, M. A. Zielke, C. B. Burgner, K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

Callegari, C.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef] [PubMed]

Calleja, M.

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010).
[CrossRef]

Carlson, G.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007).
[CrossRef]

Castellanos-Beltran, M. A.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009).
[CrossRef]

Ceballos, G.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012).
[CrossRef]

Cermak, N.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

Chan, J.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[CrossRef]

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011).
[CrossRef]

Chang, D. E.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[CrossRef]

Chaste, J.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012).
[CrossRef]

Christine, K. S.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

Cicak, K.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[CrossRef]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011).
[CrossRef]

Cleland, A. N.

A. N. Cleland, M. L. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys. 92, 2758–2769 (2002).
[CrossRef]

Clements, W. R.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[CrossRef] [PubMed]

Cohadon, P.-F.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

Craighead, H. G.

B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004).
[CrossRef]

B. Ilic, Y. Yang, H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett. 85, 2604–2606 (2004).
[CrossRef]

Dadgar, A.

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012).
[CrossRef] [PubMed]

J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).

Datskos, P. G.

N. V. Lavrik, P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[CrossRef]

Deléglise, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012).
[CrossRef]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

Donner, T.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009).
[CrossRef]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[CrossRef]

Eichler, A.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012).
[CrossRef]

Ekinci, K. L.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef] [PubMed]

K. L. Ekinci, Y. T. Tang, M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[CrossRef]

Feng, X. L.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotech. 4, 445–450 (2009).
[CrossRef]

X. L. Feng, R. He, P. D. Yang, M. L. Roukes, “Very high frequency silicon nanowire electromechanical resonators,” Nano Lett. 7, 1953–1959 (2007).
[CrossRef]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef] [PubMed]

Fernández-Regúlez, M.

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010).
[CrossRef]

Foster, J. S.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007).
[CrossRef]

Francais, O.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

García, R.

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010).
[CrossRef]

Garcia-Sanchez, D.

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8, 3735–3738 (2008).
[CrossRef] [PubMed]

Gardiner, C. W.

C. W. Gardiner, P. Zoller, Quantum Noise (Springer) (2004).

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

Genes, C.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[CrossRef]

Gigan, S.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[CrossRef]

Gil-Santos, E.

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010).
[CrossRef]

Girvin, S. M.

F. Marquardt, S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[CrossRef]

Godin, M.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007).
[CrossRef]

Gong, Q.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[CrossRef] [PubMed]

Gröblacher, S.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011).
[CrossRef]

S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724–727 (2009).
[CrossRef]

Gupta, A.

A. Gupta, D. Akin, R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett. 84, 1976–1978 (2004).
[CrossRef]

Hammerer, K.

S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724–727 (2009).
[CrossRef]

Hanay, M. S.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotech. 4, 445–450 (2009).
[CrossRef]

Harlow, J. W.

T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013).
[CrossRef]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009).
[CrossRef]

Harris, J. G. E.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[CrossRef]

He, R.

X. L. Feng, R. He, P. D. Yang, M. L. Roukes, “Very high frequency silicon nanowire electromechanical resonators,” Nano Lett. 7, 1953–1959 (2007).
[CrossRef]

Heidmann, A.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

Hiebert, W. K.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotech. 4, 445–450 (2009).
[CrossRef]

Hill, J. T.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011).
[CrossRef]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[CrossRef]

Hossein-Zadeh, M.

Huang, S.

S. Huang, G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010).
[CrossRef]

Ilic, B.

B. Ilic, Y. Yang, H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett. 85, 2604–2606 (2004).
[CrossRef]

B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004).
[CrossRef]

Jayich, A. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[CrossRef]

Jensen, K.

K. Jensen, K. Kim, A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotech. 3, 533–537 (2008).
[CrossRef]

Jiang, X.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[CrossRef] [PubMed]

Kim, K.

K. Jensen, K. Kim, A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotech. 3, 533–537 (2008).
[CrossRef]

Kippenberg, T. J.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012).
[CrossRef]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

Knudsen, S. M.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007).
[CrossRef]

Krause, A.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011).
[CrossRef]

Krylov, S.

B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004).
[CrossRef]

Lassagne, B.

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8, 3735–3738 (2008).
[CrossRef] [PubMed]

Lavrik, N. V.

N. V. Lavrik, P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[CrossRef]

Lee, J.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

Lehnert, K. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[CrossRef]

T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013).
[CrossRef]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

C. A. Regal, K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys. Conf. Ser. 264, 012025 (2011).
[CrossRef]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009).
[CrossRef]

Leseman, Z. C.

Li, B.-B.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[CrossRef] [PubMed]

Li, D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011).
[CrossRef]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

Li, J.-J.

J.-J. Li, K.-D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013).
[CrossRef]

J.-J. Li, K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012).
[CrossRef]

Li, M.

M. Li, H. X. Tang, M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotech. 2, 114–120 (2007).
[CrossRef]

Li, Y.

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012).
[CrossRef] [PubMed]

J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).

Lin, Q.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[CrossRef]

Liu, F.

Lü, X.-Y.

X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3, 2943 (2013).
[CrossRef] [PubMed]

Mackowski, J.-M.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

Manalis, S. R.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007).
[CrossRef]

Marquardt, F.

F. Marquardt, S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).
[CrossRef]

Marquardt, Florian

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[CrossRef]

Martínez, J.

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010).
[CrossRef]

Mayer Alegre, T. P.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[CrossRef]

Meystre, P.

M. Aspelmeyer, P. Meystre, K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
[CrossRef]

Michel, C.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

Moser, J.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012).
[CrossRef]

Myers, E. B.

J. L. Arlett, E. B. Myers, M.L. Roukes, “Comparative advantages of mechanical biosensors,” Nature Nanotech. 6, 203–215 (2011).
[CrossRef]

Naik, A. K.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotech. 4, 445–450 (2009).
[CrossRef]

Neuzil, P.

B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004).
[CrossRef]

Nori, F.

X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3, 2943 (2013).
[CrossRef] [PubMed]

Ober, C.

B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004).
[CrossRef]

Olcuma, S.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

Painter, O.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[CrossRef]

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011).
[CrossRef]

Palomaki, T. A.

T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013).
[CrossRef]

Paulo, Á. S.

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010).
[CrossRef]

Payer, K. R.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

Pernice, W. H. P.

Peterson, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[CrossRef]

Pinard, L.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

Pinard, M.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

Poot, M.

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012).
[CrossRef] [PubMed]

X. Sun, J. Zheng, M. Poot, C. W. Wong, H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012).
[CrossRef] [PubMed]

J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).

Purdy, T. P.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[CrossRef]

Qu, K. N.

K. N. Qu, G. S. Agarwal, “Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems,” Phys. Rev. A 87, 031802(R) (2013).
[CrossRef]

Ramos, D.

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010).
[CrossRef]

Regal, C. A.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[CrossRef]

C. A. Regal, K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys. Conf. Ser. 264, 012025 (2011).
[CrossRef]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

Roukes, M. L.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotech. 4, 445–450 (2009).
[CrossRef]

M. Li, H. X. Tang, M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotech. 2, 114–120 (2007).
[CrossRef]

X. L. Feng, R. He, P. D. Yang, M. L. Roukes, “Very high frequency silicon nanowire electromechanical resonators,” Nano Lett. 7, 1953–1959 (2007).
[CrossRef]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef] [PubMed]

K. C. Schwab, M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[CrossRef]

K. L. Ekinci, Y. T. Tang, M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[CrossRef]

A. N. Cleland, M. L. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys. 92, 2758–2769 (2002).
[CrossRef]

Roukes, M.L.

J. L. Arlett, E. B. Myers, M.L. Roukes, “Comparative advantages of mechanical biosensors,” Nature Nanotech. 6, 203–215 (2011).
[CrossRef]

Rousseau, L.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

Rurali, R.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012).
[CrossRef]

Safavi-Naeini, A. H.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011).
[CrossRef]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[CrossRef]

Schliesser, A.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012).
[CrossRef]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

Schwab, K.

M. Aspelmeyer, P. Meystre, K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
[CrossRef]

Schwab, K. C.

K. C. Schwab, M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[CrossRef]

Senaratne, W.

B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004).
[CrossRef]

Shao, L.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[CrossRef] [PubMed]

Shen, W.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007).
[CrossRef]

Shi, N. N.

Si, L.-G.

H. Xiong, L.-G. Si, A.-S. Zheng, X. X. Yang, Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Simmonds, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[CrossRef]

T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013).
[CrossRef]

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011).
[CrossRef]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

Sirois, A. J.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011).
[CrossRef]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

Sun, X.

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012).
[CrossRef] [PubMed]

X. Sun, J. Zheng, M. Poot, C. W. Wong, H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012).
[CrossRef] [PubMed]

J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).

Tamayo, J.

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010).
[CrossRef]

Tang, H. X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012).
[CrossRef] [PubMed]

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012).
[CrossRef] [PubMed]

M. Li, H. X. Tang, M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotech. 2, 114–120 (2007).
[CrossRef]

J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).

Tang, Y. T.

K. L. Ekinci, Y. T. Tang, M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[CrossRef]

Teufel, J. D.

T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013).
[CrossRef]

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011).
[CrossRef]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009).
[CrossRef]

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[CrossRef]

Tombesi, P.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[CrossRef]

Turner, K. L.

Z. Yie, M. A. Zielke, C. B. Burgner, K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

Vanner, M. R.

S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724–727 (2009).
[CrossRef]

Verhagen, E.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012).
[CrossRef]

Vitali, D.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[CrossRef]

Vollmer, F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[CrossRef] [PubMed]

Wang, W.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[CrossRef] [PubMed]

Wasserman, S. C.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

Weis, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012).
[CrossRef]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

Whittaker, J. D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011).
[CrossRef]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

Winger, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[CrossRef]

Wong, C. W.

X. Sun, J. Zheng, M. Poot, C. W. Wong, H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012).
[CrossRef] [PubMed]

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012).
[CrossRef] [PubMed]

J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).

Wu, Y.

X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3, 2943 (2013).
[CrossRef] [PubMed]

H. Xiong, L.-G. Si, A.-S. Zheng, X. X. Yang, Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Xiao, Y.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[CrossRef] [PubMed]

Xiong, H.

H. Xiong, L.-G. Si, A.-S. Zheng, X. X. Yang, Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Yang, P. D.

X. L. Feng, R. He, P. D. Yang, M. L. Roukes, “Very high frequency silicon nanowire electromechanical resonators,” Nano Lett. 7, 1953–1959 (2007).
[CrossRef]

Yang, X. X.

H. Xiong, L.-G. Si, A.-S. Zheng, X. X. Yang, Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Yang, Y.

B. Ilic, Y. Yang, H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett. 85, 2604–2606 (2004).
[CrossRef]

Yang, Y. T.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef] [PubMed]

Yie, Z.

Z. Yie, M. A. Zielke, C. B. Burgner, K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

Yu, X.-C.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[CrossRef] [PubMed]

Zettl, A.

K. Jensen, K. Kim, A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotech. 3, 533–537 (2008).
[CrossRef]

Zhang, W.-M.

X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3, 2943 (2013).
[CrossRef] [PubMed]

Zheng, A.-S.

H. Xiong, L.-G. Si, A.-S. Zheng, X. X. Yang, Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Zheng, J.

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012).
[CrossRef] [PubMed]

X. Sun, J. Zheng, M. Poot, C. W. Wong, H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012).
[CrossRef] [PubMed]

J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).

Zhu, K.-D.

J.-J. Li, K.-D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013).
[CrossRef]

J.-J. Li, K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012).
[CrossRef]

Zielke, M. A.

Z. Yie, M. A. Zielke, C. B. Burgner, K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

Zoller, P.

C. W. Gardiner, P. Zoller, Quantum Noise (Springer) (2004).

Zwickl, B. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[CrossRef]

Adv. Mater. (1)

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

J.-J. Li, K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012).
[CrossRef]

N. V. Lavrik, P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[CrossRef]

A. Gupta, D. Akin, R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett. 84, 1976–1978 (2004).
[CrossRef]

B. Ilic, Y. Yang, H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett. 85, 2604–2606 (2004).
[CrossRef]

IEEE Sensors (1)

F. Liu, M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors 13, 146–147 (2013).
[CrossRef]

J. Appl. Phys. (3)

K. L. Ekinci, Y. T. Tang, M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004).
[CrossRef]

B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004).
[CrossRef]

A. N. Cleland, M. L. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys. 92, 2758–2769 (2002).
[CrossRef]

J. Micromech. Microeng. (1)

Z. Yie, M. A. Zielke, C. B. Burgner, K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

J. Phys. Conf. Ser. (1)

C. A. Regal, K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys. Conf. Ser. 264, 012025 (2011).
[CrossRef]

Nano Lett. (4)

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef] [PubMed]

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8, 3735–3738 (2008).
[CrossRef] [PubMed]

X. L. Feng, R. He, P. D. Yang, M. L. Roukes, “Very high frequency silicon nanowire electromechanical resonators,” Nano Lett. 7, 1953–1959 (2007).
[CrossRef]

X. Sun, J. Zheng, M. Poot, C. W. Wong, H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012).
[CrossRef] [PubMed]

Nature (London) (9)

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[CrossRef]

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007).
[CrossRef]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[CrossRef]

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011).
[CrossRef]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011).
[CrossRef]

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011).
[CrossRef]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012).
[CrossRef]

T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013).
[CrossRef]

S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724–727 (2009).
[CrossRef]

Nature Nanotech. (8)

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotech. 4, 445–450 (2009).
[CrossRef]

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010).
[CrossRef]

K. Jensen, K. Kim, A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotech. 3, 533–537 (2008).
[CrossRef]

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012).
[CrossRef]

M. Li, H. X. Tang, M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotech. 2, 114–120 (2007).
[CrossRef]

J. L. Arlett, E. B. Myers, M.L. Roukes, “Comparative advantages of mechanical biosensors,” Nature Nanotech. 6, 203–215 (2011).
[CrossRef]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009).
[CrossRef]

A. Boisen, “Nanoelectromechanical systems: Mass spec goes nanomechanical,” Nature Nanotech. 4, 404–405 (2009).
[CrossRef]

Nature Phys. (1)

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[CrossRef]

Opt. Express (2)

Phys. Rep. (1)

J.-J. Li, K.-D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013).
[CrossRef]

Phys. Rev. A (4)

K. N. Qu, G. S. Agarwal, “Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems,” Phys. Rev. A 87, 031802(R) (2013).
[CrossRef]

S. Huang, G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010).
[CrossRef]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[CrossRef]

H. Xiong, L.-G. Si, A.-S. Zheng, X. X. Yang, Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006).
[CrossRef] [PubMed]

Phys. Today (2)

M. Aspelmeyer, P. Meystre, K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
[CrossRef]

K. C. Schwab, M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[CrossRef]

Physics (1)

F. Marquardt, S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).
[CrossRef]

Proc. Natl. Acd. Sci. U.S.A. (1)

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014).
[CrossRef]

Sci. Rep. (1)

X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3, 2943 (2013).
[CrossRef] [PubMed]

Science (2)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef] [PubMed]

T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

Other (3)

R. W. Boyd, Nonlinear Optics (Academic, 2008).

C. W. Gardiner, P. Zoller, Quantum Noise (Springer) (2004).

J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the hybrid opto-electromechanical system. A mechanical resonator c couples to both an optical cavity modes a and a microwave cavity mode b denoted by the equivalent inductance L and equivalent capacitance C. The optical cavity is driven by a strong pump beam Eo in the simultaneous presence of a weak probe beam Ep while the microwave cavity is only driven by a pump beam Ee.

Fig. 2
Fig. 2

(a) The probe transmission |t|2 as a function of the probe-cavity detuning Δp with Δo = Δe = 0 and Po = Pe = 0.01 μW, where two sideband peaks locate exactly at Δp = ±ωm. (b) The enlarged sideband peaks in (a), and the spectral width is the mechanical damping rate γm/2π. The other parameters used are ωo = 2π × 282 THz, ωe = 2π × 7.1 GHz, κo = 2π × 1.65 MHz, κe = 2π × 1.6 MHz, κo,ext = 0.76κo, κe,ext = 0.11κe, go = 2π × 27 Hz, ge = 2π × 2.7 Hz, ωm = 2π × 5.6 MHz, and γm = 2π × 4 Hz.

Fig. 3
Fig. 3

The simulation results of the probe transmission |t|2 versus the probe-cavity detuning Δp before and after adsorption of a single baculovirus on the mechanical resonator. The frequency shift of Δω/2π = 93 Hz can be easily resolved in the spectrum. Here, we have used the left peak in Fig. 2(b) to demonstrate the validity of our proposed mass sensing scheme. The inset plots the frequency shift as a function of the number of the virus adsorbed on the resonator. Other parameters are the same as in figure 2.

Fig. 4
Fig. 4

Nonlinear probe transmission spectrum (FWM) as a function of the probe-cavity detuning Δp before and after a binding event of a single 20-nm-diameter gold nanoparticle. The other parameters used are ωo = 2π × 282 THz, ωe = 2π × 7.1 GHz, κo = 2π × 1.65 MHz, κe = 2π × 1.6 MHz, κo,ext = 0.76κo, κe,ext = 0.11κe, go = 2π × 27 Hz, ge = 2π × 2.7 Hz, ωm = 2π × 5.6 MHz, γm = 2π × 4 Hz, Δo = Δe = 0, and Po = Pe = 0.01 μW.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

H 0 = h ¯ Δ o a a + h ¯ Δ e b b + h ¯ ω m c c , H drive = i h ¯ κ o , ext E o ( a a ) + i h ¯ κ e , ext E e ( b b ) + i h ¯ κ o , ext E p ( a e i δ t a e i δ t ) .
a ˙ = i ( Δ o g o Q ) a κ o a + κ o , ext ( E o + E p e i δ t ) + 2 κ o a in ,
b ˙ = i ( Δ e g e Q ) b κ e B + κ e , ext E e + 2 κ e b in ,
Q ¨ + γ m Q ˙ + ω m 2 Q = 2 g o ω m a a + 2 g e ω m b b + ξ ,
a in ( t ) a in ( t ) = b in ( t ) b in ( t ) = δ ( t t ) ,
a in ( t ) a in ( t ) = b in ( t ) b in ( t ) = 0 .
ξ ( t ) ξ ( t ) = γ m ω m d ω 2 π ω e i ω ( t t ) [ 1 + coth ( h ¯ ω 2 k B T ) ] ,
a s = κ o , ext E o κ o + i Δ o , b s = κ e , ext E e κ e + i Δ e , Q s = 2 ω m ( g o | a s | 2 + g e | b s | 2 ) ,
a = a s + δ a , b = b s + δ b , Q = Q s + δ Q .
δ a ˙ = ( κ o + i Δ o ) δ a + i g o Q s δ a + i g o a s δ Q + κ o , ext E p e i δ t + 2 κ o a in ,
δ b ˙ = ( κ e + i Δ e ) δ b + i g e Q s δ b + i g e b s δ Q + 2 κ e b in ,
δ Q ¨ + γ m δ Q ˙ + ω m 2 δ Q = 2 ω m g o a s ( δ a + δ a ) + 2 ω m g e b s ( δ b + δ b ) + ξ ,
δ a ˙ = ( κ o + i Δ o ) δ a + i g o Q s δ a + i g o a s δ Q + κ o , ext E p e i δ t ,
δ b ˙ = ( κ e + i Δ e ) δ b + i g e Q s δ b + i g e b s δ Q ,
δ Q ¨ + γ m δ Q ˙ + ω m 2 δ Q = 2 ω m g o a s ( δ a + δ a ) + 2 ω m g e b s ( δ b + δ b ) ,
a + = κ o , ext E p κ o + i Δ o i δ i g o 2 n o f ( δ ) κ o , ext E p ( κ o + i Δ o i δ ) 2 ,
a = 1 f ( δ ) * ( κ o + i Δ o ) 2 i g o 2 κ o , ext E o 2 κ o , ext E p ( κ o + i δ ) 2 + Δ o 2 ,
f ( δ ) = 2 Δ o g o 2 n o ( κ o i δ ) 2 + Δ o 2 + 2 Δ e g e 2 n e ( κ e i δ ) 2 + Δ e 2 ω m 2 δ 2 i δ γ m ω m .
n o = κ o , ext E o 2 κ o 2 + [ Δ o 2 g o / ω m ( g o n o + g e n e ) ] 2 ,
n e = κ e , ext E e 2 κ e 2 + [ Δ e 2 g e / ω m ( g o n o + g e n e ) ] 2 .
a out ( t ) = ( E o κ o , ext a s ) e i Ω o t + ( E p κ o , ext a + ) e i ( δ + Ω o ) t κ o , ext a e i ( δ Ω o ) t = ( E o κ o , ext a s ) e i Ω o t + ( E p κ o , ext a + ) e i Ω p t κ o , ext a e i ( 2 Ω o Ω p ) t .
t ( Ω p ) = E p κ o , ext a + E p = 1 [ κ o , ext κ o + i Δ o i δ 1 f ( δ ) i g o 2 n o κ o , ext ( κ o + i Δ o i δ ) 2 ] .
FWM = | κ o , ext a E p | 2 = | 1 f ( δ ) * ( κ o + i Δ o ) 2 i g o 2 κ o , ext 2 E o 2 ( κ o + i δ ) 2 + i Δ o 2 | 2 .
Δ m = 2 m eff ω m Δ ω = 1 Δ ω ,

Metrics