Abstract

We demonstrate experimentally and numerically that in fiber tips as they are used in NSOMs azimuthally polarized electrical fields (|Eazi|2 / |Etot|2 ≈55% ± 5% for λ0 = 1550 nm), respectively subwavelength confined (FWHM ≈450 nm ≈λ0/3.5) magnetic fields, are generated for a certain tip aperture diameter (d = 1.4 μm). We attribute the generation of this field distribution in metal-coated fiber tips to symmetry breaking in the bend and subsequent plasmonic mode filtering in the truncated conical taper.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Greffet, R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–237 (1997).
    [CrossRef]
  2. U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
    [CrossRef]
  3. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
    [CrossRef] [PubMed]
  4. H. Heinzelmann, D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys., A Mater. Sci. Process. 59(2), 89–101 (1994).
    [CrossRef]
  5. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  6. B. Bhushan, H. Fuchs, and M. Tomitori, Applied Scanning ProbeMethods VIII (Springer, 2008).
  7. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
    [CrossRef]
  8. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
    [CrossRef] [PubMed]
  9. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31(22), 4563–4568 (1992).
    [CrossRef] [PubMed]
  10. Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato, “Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy,” J. Appl. Phys. 83(8), 3998–4003 (1998).
    [CrossRef]
  11. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
    [CrossRef] [PubMed]
  12. H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
    [CrossRef] [PubMed]
  13. H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013).
    [CrossRef] [PubMed]
  14. L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
    [CrossRef] [PubMed]
  15. T. J. Antosiewicz, T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15(17), 10920–10928 (2007).
    [CrossRef] [PubMed]
  16. T. J. Antosiewicz, P. Wróbel, T. Szoplik, “Magnetic field concentrator for probing optical magnetic metamaterials,” Opt. Express 18(25), 25906–25911 (2010).
    [CrossRef] [PubMed]
  17. P. Wróbel, T. J. Antosiewicz, T. Stefaniuk, T. Szoplik, “Plasmonic concentrator of magnetic field of light,” J. Appl. Phys. 112(7), 074304 (2012).
    [CrossRef]
  18. B. le Feber, N. Rotenberg, D. M. Beggs, L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2013).
  19. L. Stern, B. Desiatov, I. Goykhman, G. M. Lerman, U. Levy, “Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe,” Opt. Express 19(13), 12014–12020 (2011).
    [CrossRef] [PubMed]
  20. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49(1), 269–279 (1986).
    [CrossRef] [PubMed]
  21. A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13(9), 4539–4545 (2013).
    [CrossRef] [PubMed]
  22. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]
  23. P. Banzer, U. Peschel, S. Quabis, G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905–10923 (2010).
    [CrossRef] [PubMed]
  24. J. Sancho-Parramon, S. Bosch, “Dark modes and fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
    [CrossRef] [PubMed]
  25. W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
    [CrossRef] [PubMed]
  26. L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
    [CrossRef] [PubMed]
  27. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
    [CrossRef]
  28. Y. Wang, W. Srituravanich, C. Sun, X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
    [CrossRef] [PubMed]
  29. L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11(6), 1768–1779 (1994).
    [CrossRef]
  30. E. D. Palik, D. W. Lynch, and W. R. Hunter, Handbook of Optical Constants (Optical Society of America, 1985), Vol. 1, pp. 286–295.
  31. Corning SMF-28 Optical Fiber (Corning Inc., 2002), Vol. PI1036, pp. 1–4, http://www.photonics.byu.edu/FiberOpticConnectors.parts/images/smf28.pdf .
  32. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  33. A. J. Ward, J. B. Pendry, “The theory of SNOM: A novel approach,” J. Mod. Opt. 44(9), 1703–1714 (1997).
    [CrossRef]
  34. L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
    [CrossRef] [PubMed]
  35. P. Banzer, J. Kindler, S. Quabis, U. Peschel, G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film,” Opt. Express 18(10), 10896–10904 (2010).
    [CrossRef] [PubMed]
  36. S. Ramachandran, P. Kristensen, M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [CrossRef] [PubMed]
  37. A. Witkowska, S. G. Leon-Saval, A. Pham, T. A. Birks, “All-fiber LP11 mode convertors,” Opt. Lett. 33(4), 306–308 (2008).
    [CrossRef] [PubMed]
  38. G. Volpe, D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
    [CrossRef]
  39. T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
    [CrossRef]
  40. P. Uebel, M. A. Schmidt, M. Scharrer, P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(063016), 1–7 (2011).
  41. A. K. Sarychev, G. Shvets, V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036609 (2006).
    [CrossRef] [PubMed]
  42. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
    [CrossRef]
  43. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
    [CrossRef]
  44. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
    [CrossRef]

2013 (4)

B. le Feber, N. Rotenberg, D. M. Beggs, L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2013).

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13(9), 4539–4545 (2013).
[CrossRef] [PubMed]

L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
[CrossRef] [PubMed]

H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013).
[CrossRef] [PubMed]

2012 (4)

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

P. Wróbel, T. J. Antosiewicz, T. Stefaniuk, T. Szoplik, “Plasmonic concentrator of magnetic field of light,” J. Appl. Phys. 112(7), 074304 (2012).
[CrossRef]

J. Sancho-Parramon, S. Bosch, “Dark modes and fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[CrossRef] [PubMed]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

2011 (4)

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[CrossRef] [PubMed]

P. Uebel, M. A. Schmidt, M. Scharrer, P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(063016), 1–7 (2011).

L. Stern, B. Desiatov, I. Goykhman, G. M. Lerman, U. Levy, “Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe,” Opt. Express 19(13), 12014–12020 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (2)

S. Ramachandran, P. Kristensen, M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[CrossRef] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

2008 (3)

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[CrossRef]

Y. Wang, W. Srituravanich, C. Sun, X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

A. Witkowska, S. G. Leon-Saval, A. Pham, T. A. Birks, “All-fiber LP11 mode convertors,” Opt. Lett. 33(4), 306–308 (2008).
[CrossRef] [PubMed]

2007 (2)

T. J. Antosiewicz, T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15(17), 10920–10928 (2007).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

2006 (1)

A. K. Sarychev, G. Shvets, V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036609 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

2004 (2)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

G. Volpe, D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

2003 (1)

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

2002 (1)

T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

1999 (1)

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
[CrossRef] [PubMed]

1998 (1)

Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato, “Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy,” J. Appl. Phys. 83(8), 3998–4003 (1998).
[CrossRef]

1997 (2)

J. Greffet, R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–237 (1997).
[CrossRef]

A. J. Ward, J. B. Pendry, “The theory of SNOM: A novel approach,” J. Mod. Opt. 44(9), 1703–1714 (1997).
[CrossRef]

1994 (3)

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11(6), 1768–1779 (1994).
[CrossRef]

H. Heinzelmann, D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys., A Mater. Sci. Process. 59(2), 89–101 (1994).
[CrossRef]

1992 (1)

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

1986 (2)

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
[CrossRef]

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49(1), 269–279 (1986).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Ahn, J.

Ahn, K.

Aloni, S.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Antosiewicz, T. J.

Ataka, T.

Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato, “Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy,” J. Appl. Phys. 83(8), 3998–4003 (1998).
[CrossRef]

Atwater, H. A.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13(9), 4539–4545 (2013).
[CrossRef] [PubMed]

Bak, W. S.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Banzer, P.

Bao, K.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Bao, W.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Beggs, D. M.

B. le Feber, N. Rotenberg, D. M. Beggs, L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2013).

Betzig, E.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31(22), 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49(1), 269–279 (1986).
[CrossRef] [PubMed]

Birks, T. A.

Bokor, J.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Bosch, S.

J. Sancho-Parramon, S. Bosch, “Dark modes and fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[CrossRef] [PubMed]

Burgos, S. P.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13(9), 4539–4545 (2013).
[CrossRef] [PubMed]

Burresi, M.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Busch, K.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[CrossRef]

Cabrini, S.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Carminati, R.

J. Greffet, R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–237 (1997).
[CrossRef]

Caselli, N.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Chiba, N.

Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato, “Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy,” J. Appl. Phys. 83(8), 3998–4003 (1998).
[CrossRef]

Choi, S. B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Choi, W. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Choo, H.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Courjon, D.

T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Desiatov, B.

Dorn, R.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Dunn, R. C.

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
[CrossRef] [PubMed]

Dürig, U.

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
[CrossRef]

Eah, S. H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Economou, E. N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Enkrich, C.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Feth, N.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[CrossRef]

Gerthsen, D.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Gordon, R.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[CrossRef] [PubMed]

Goykhman, I.

Greffet, J.

J. Greffet, R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–237 (1997).
[CrossRef]

Grosjean, T.

T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Hafner, C.

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

Halas, N. J.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Harootunian, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49(1), 269–279 (1986).
[CrossRef] [PubMed]

Harris, T. D.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31(22), 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Heinzelmann, H.

H. Heinzelmann, D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys., A Mater. Sci. Process. 59(2), 89–101 (1994).
[CrossRef]

Homma, K.

Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato, “Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy,” J. Appl. Phys. 83(8), 3998–4003 (1998).
[CrossRef]

Houyou, A.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[CrossRef] [PubMed]

Husnik, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[CrossRef]

Intonti, F.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Isaacson, M.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49(1), 269–279 (1986).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Juan, M. L.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[CrossRef] [PubMed]

Kafesaki, M.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Kampfrath, T.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Katsarakis, N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Kihm, H. W.

H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013).
[CrossRef] [PubMed]

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Kihm, J. E.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Kim, D. S.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Kim, D.-S.

H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013).
[CrossRef] [PubMed]

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Kim, H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Kim, J.

H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Kim, M.-K.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Kim, Q. H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Kindler, J.

Klein, M. W.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[CrossRef]

König, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[CrossRef]

Koo, S.

Koo, S. M.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Koschny, T.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Kratschmer, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49(1), 269–279 (1986).
[CrossRef] [PubMed]

Kriesch, A.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13(9), 4539–4545 (2013).
[CrossRef] [PubMed]

Kristensen, P.

Kuipers, L.

B. le Feber, N. Rotenberg, D. M. Beggs, L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2013).

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

le Feber, B.

B. le Feber, N. Rotenberg, D. M. Beggs, L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2013).

Lee, B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Lee, K.

Lee, K. G.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Leon-Saval, S. G.

Lerman, G. M.

Leuchs, G.

Levy, U.

Lewis, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49(1), 269–279 (1986).
[CrossRef] [PubMed]

Lienau, C.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Linden, S.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[CrossRef]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Melli, M.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Mitsuoka, Y.

Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato, “Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy,” J. Appl. Phys. 83(8), 3998–4003 (1998).
[CrossRef]

Muramatsu, H.

Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato, “Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy,” J. Appl. Phys. 83(8), 3998–4003 (1998).
[CrossRef]

Nakajima, K.

Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato, “Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy,” J. Appl. Phys. 83(8), 3998–4003 (1998).
[CrossRef]

Neumann, L.

L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
[CrossRef] [PubMed]

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[CrossRef] [PubMed]

Niegemann, J.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[CrossRef]

Nordlander, P.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11(6), 1768–1779 (1994).
[CrossRef]

Ogletree, D. F.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Pang, Y.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[CrossRef] [PubMed]

Park, D. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Park, N.

Park, N. K.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Park, Q. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Pendry, J. B.

A. J. Ward, J. B. Pendry, “The theory of SNOM: A novel approach,” J. Mod. Opt. 44(9), 1703–1714 (1997).
[CrossRef]

Pérez-Willard, F.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Peschel, U.

Petrov, D.

G. Volpe, D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

Pfeifer, H.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13(9), 4539–4545 (2013).
[CrossRef] [PubMed]

Pham, A.

Ploss, D.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13(9), 4539–4545 (2013).
[CrossRef] [PubMed]

Pohl, D. W.

H. Heinzelmann, D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys., A Mater. Sci. Process. 59(2), 89–101 (1994).
[CrossRef]

L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11(6), 1768–1779 (1994).
[CrossRef]

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
[CrossRef]

Quabis, S.

Ramachandran, S.

Regli, P.

Riboli, F.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Rohner, F.

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
[CrossRef]

Ropers, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Rotenberg, N.

B. le Feber, N. Rotenberg, D. M. Beggs, L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2013).

Russell, P. S. J.

P. Uebel, M. A. Schmidt, M. Scharrer, P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(063016), 1–7 (2011).

Salmeron, M. B.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Sancho-Parramon, J.

J. Sancho-Parramon, S. Bosch, “Dark modes and fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[CrossRef] [PubMed]

Sarychev, A. K.

A. K. Sarychev, G. Shvets, V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036609 (2006).
[CrossRef] [PubMed]

Sato, K.

Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato, “Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy,” J. Appl. Phys. 83(8), 3998–4003 (1998).
[CrossRef]

Scharrer, M.

P. Uebel, M. A. Schmidt, M. Scharrer, P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(063016), 1–7 (2011).

Schmidt, M. A.

P. Uebel, M. A. Schmidt, M. Scharrer, P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(063016), 1–7 (2011).

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Schuck, P. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Seok, T. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Shalaev, V. M.

A. K. Sarychev, G. Shvets, V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036609 (2006).
[CrossRef] [PubMed]

Shvets, G.

A. K. Sarychev, G. Shvets, V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036609 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Spajer, M.

T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Srituravanich, W.

Y. Wang, W. Srituravanich, C. Sun, X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

Staffaroni, M.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Stefaniuk, T.

P. Wróbel, T. J. Antosiewicz, T. Stefaniuk, T. Szoplik, “Plasmonic concentrator of magnetic field of light,” J. Appl. Phys. 112(7), 074304 (2012).
[CrossRef]

Stern, L.

Sun, C.

Y. Wang, W. Srituravanich, C. Sun, X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

Szoplik, T.

Trautman, J. K.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31(22), 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Uebel, P.

P. Uebel, M. A. Schmidt, M. Scharrer, P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(063016), 1–7 (2011).

van ’t Oever, J.

L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
[CrossRef] [PubMed]

van Hulst, N. F.

L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
[CrossRef] [PubMed]

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[CrossRef] [PubMed]

van Oosten, D.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Volpe, G.

G. Volpe, D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

Wang, Y.

Y. Wang, W. Srituravanich, C. Sun, X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

Ward, A. J.

A. J. Ward, J. B. Pendry, “The theory of SNOM: A novel approach,” J. Mod. Opt. 44(9), 1703–1714 (1997).
[CrossRef]

Weber-Bargioni, A.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Wegener, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[CrossRef]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Weiner, J. S.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31(22), 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Wiersma, D. S.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Witkowska, A.

Wolfe, R.

Woo, D. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Wróbel, P.

P. Wróbel, T. J. Antosiewicz, T. Stefaniuk, T. Szoplik, “Plasmonic concentrator of magnetic field of light,” J. Appl. Phys. 112(7), 074304 (2012).
[CrossRef]

T. J. Antosiewicz, P. Wróbel, T. Szoplik, “Magnetic field concentrator for probing optical magnetic metamaterials,” Opt. Express 18(25), 25906–25911 (2010).
[CrossRef] [PubMed]

Wu, M. C.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Yablonovitch, E.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Yan, M. F.

Yoon, Y. C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

Zhang, X.

Y. Wang, W. Srituravanich, C. Sun, X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

Zhou, J. F.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

ACS Nano (1)

J. Sancho-Parramon, S. Bosch, “Dark modes and fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[CrossRef] [PubMed]

Adv. Mater. (1)

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

H. Heinzelmann, D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys., A Mater. Sci. Process. 59(2), 89–101 (1994).
[CrossRef]

Biophys. J. (1)

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49(1), 269–279 (1986).
[CrossRef] [PubMed]

Chem. Rev. (1)

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

P. Wróbel, T. J. Antosiewicz, T. Stefaniuk, T. Szoplik, “Plasmonic concentrator of magnetic field of light,” J. Appl. Phys. 112(7), 074304 (2012).
[CrossRef]

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
[CrossRef]

Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato, “Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy,” J. Appl. Phys. 83(8), 3998–4003 (1998).
[CrossRef]

J. Mod. Opt. (1)

A. J. Ward, J. B. Pendry, “The theory of SNOM: A novel approach,” J. Mod. Opt. 44(9), 1703–1714 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (4)

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[CrossRef] [PubMed]

L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
[CrossRef] [PubMed]

Y. Wang, W. Srituravanich, C. Sun, X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13(9), 4539–4545 (2013).
[CrossRef] [PubMed]

Nat. Commun. (1)

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Nat. Photonics (4)

B. le Feber, N. Rotenberg, D. M. Beggs, L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2013).

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[CrossRef]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[CrossRef]

New J. Phys. (1)

P. Uebel, M. A. Schmidt, M. Scharrer, P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(063016), 1–7 (2011).

Opt. Commun. (2)

G. Volpe, D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. K. Sarychev, G. Shvets, V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036609 (2006).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Prog. Surf. Sci. (1)

J. Greffet, R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–237 (1997).
[CrossRef]

Science (3)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[CrossRef] [PubMed]

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[CrossRef] [PubMed]

Other (4)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

B. Bhushan, H. Fuchs, and M. Tomitori, Applied Scanning ProbeMethods VIII (Springer, 2008).

E. D. Palik, D. W. Lynch, and W. R. Hunter, Handbook of Optical Constants (Optical Society of America, 1985), Vol. 1, pp. 286–295.

Corning SMF-28 Optical Fiber (Corning Inc., 2002), Vol. PI1036, pp. 1–4, http://www.photonics.byu.edu/FiberOpticConnectors.parts/images/smf28.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM of a tapered, bent and metal-coated (Cr/Au) NSOM tip. At the beginning of the bend the outer apex diameter D is ≈50 μm, which tapers to D ≈34 μm after a ≈60° bend. Subsequently a truncated cone with a length of ≈360 μm follows until the tip apex. (b) Colorized SEM of the stepwise FIB cut-back to increase the lateral outer apex diameter D. (c) Polished tip apex for a tip aperture diameter of d = 1.4 μm.

Fig. 2
Fig. 2

The experimental setup for imaging the NSOM tip polarization-controlled emission in real and Fourier space. The light from the 1.5 mW fiber-coupled IR laser is amplified to a total power between 9 mW and 11 mW. The power is sent into a free-space setup and is directed through a polarizer, a half- and a quarter-wave-plate before it is fiber-coupled into the 2 m long single mode fiber (SMF 28) with the NSOM tip at the end.

Fig. 3
Fig. 3

Measured field intensity at the tip apex overlaid with the respective SEM picture for (a) d = 1.0 μm, (b) d = 1.4 μm and (c) d = 1.8 μm tip aperture diameter. The white ellipses mark the tip aperture border between the outer metal and the inner silica cladding. (d) – (f) Field intensities at the tip apex imaged through a polarizer of varying orientations for the tip aperture diameters displayed above. (d) For d = 1.0 μm the measurement shows linear polarization in z-direction. (e) For d = 1.4 μm partially azimuthal polarization is visible. (f) Higher order modes are visible for d = 1.8 μm. (g) – (h) Directionality of the emitted farfield for d = 1.4 μm for horizontal and vertical polarization compared with (i) – (j) numerical simulations.

Fig. 4
Fig. 4

Field evolution in a bent and metal-coated NSOM tip. (a) SEM, which formed the basis of the 3D FDTD. (I-III) The simulation was split into 3 domains. (I) Light of a linearly polarized mode is reflected on the concave bend wall into the tapered tip (II-III). (b) As the tip diameter decreases higher order modes become successively extinct. Close to the tip apex only one azimuthally and one linearly polarized mode are supported.

Fig. 5
Fig. 5

(a) Ratio γ of azimuthal field power to the total field power derived from the 3D FDTD simulation along the full tip in the uv-plane (see Fig. 4(a)). The maximum portion of azimuthal polarization is achieved for d = 1.4 μm. Inset (a1 – a3) Experimental and simulated field distribution |(E)(x,y,z)|2 for the respective tip aperture diameters in the yz-plane (see Figs. 2, 3, and 4(a)). The simulation shows the field distribution at the apex including the emitted and evanescent fields. Especially the simulation in the inset (a3) shows strong near-field enhancement at the edge of the tip apex, which corresponds to a marginal remaining azimuthally polarized part. Within the scope of the measurement precision no azimuthal component was detected for d = 1.0 μm. All overlaid arrows show Re(E)(y,z)) indicating the polarization of the fields emitted from the tip. (b) 3D FDTD simulation of the propagation of an azimuthally and a linearly polarized mode through the final section of a truncated cone resembling the plasmonic modal filter at the end of the tip. We separately injected the two modes with equal power at a tip aperture diameter d = 2.4 μm. The azimuthally polarized mode first experiences less loss than the linearly polarized one, but then it runs into a quasi-cutoff for d ≈1.0 μm. The linearly polarized mode has its cutoff only for d ≈0.4 μm. (c) – (d) Respective source modes for the simulation in (b).

Fig. 6
Fig. 6

Comparison of the energy density of the magnetic and the electrical fields for the tip aperture (d = 1.4 μm) obtained via 3D FDTD simulation of the bent and tapered NSOM tip (see Fig. 4(a)). All images are normalized to the maximum magnetic energy density ½ μ0 (max |(H)|2). (a) As it is characteristic for an azimuthally polarized electric field distribution, the magnetic field is mainly polarized in propagation direction (Hx) and concentrated in a subwavelength spot with a diameter of FWHM ≈300 nm. The total magnetic field (b), has a FWHM ≈450 nm. (c) The electrical energy density is displayed together with arrows representing the real part of its transverse components (y,z), clearly indicating the dominating azimuthal field distribution with an outer diameter of FWHM ≈1 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ϕ (r)= 1 2π 0 2π dϕE (r,ϕ) e ϕ
γ= 0 dr2πr | E ϕ (r) | 2 dx dy | E(x,y,z) | 2
dx dy | E (x,y,z) azi,taper | 2 dx dy | E (x,y,z) azi,taper +αE (x,y,z) lin,taper | 2 = 1 1+ | α | 2 =55%±5%

Metrics