Abstract

In this paper we show the suitability of a miniaturized tunable diode laser spectroscopy (TDLS)-based carbon-monoxide (CO) sensor for fire detection applications. The sensor utilizes a vertical-cavity surface-emitting laser (VCSEL) and inherent calibration scheme with reference gas filled in the photodetector housing. The fire-detection experiments are carried out under realistic conditions as described in the European standard EN54. The CO generation of all class C fires (according to EN54) could be well resolved. The cross-sensitivity to other substances was found to be very low: the maximum CO false response from cigarette smoke, hairspray and general aerosols reaches a low value of a few μL/L and only if the substance is directly applied into the sensor gas inlet. Therefore this sensor overcomes the disadvantage of high false alarm rate given by smoke detectors and is also in small size which is suitable for household and industrial applications. Hence, the VCSEL-based TDLS sensor is shown to have sufficient performance for fire-detection. It has advantages such as capability for fail-safe operation and, low cross-sensitivities as compared to existing point fire detector technology which is presently limited by these factors.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-J. Chen, C. Hovde, K. A. Peterson, A. Marshal, “Fire detection using smoke and gas sensors,” Fire Saf. J. 42, 507–515 (2007).
    [CrossRef]
  2. T.-H. Chen, P.-H. Wu, Y.-C. Chiou, “An early fire-detection method based on image processing,” in Proceedings of the 2004 International Conference on Image Processing(2004), pp. 1707–1710.
  3. D. Gutmacher, U. Hoefer, J. Wöllenstein, “Gas sensor technologies for fire detection,” Sens. Actuators B 175, 40–45 (2012).
    [CrossRef]
  4. R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
    [CrossRef]
  5. U. Hoefer, D. Gutmacher, “Fire gas detection,” Procedia Eng. 47, 1446–1459 (2012).
    [CrossRef]
  6. P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in Conference on Lasers and Electro-Optics 2013, paper JW2A.68.
  7. A. A. Kosterev, F. K. Tittel, “Advanced quartz-enhanced photoacoustic trace gas sensor for early fire detection,” SAE Int. J. Aerosp. 1, 331–336 (2009).
  8. R. Engelbrecht, “A compact NIR fiber-optic diode laser spectrometer for CO and CO2: analysis of observed 2f wavelength modulation spectroscopy line shapes,” Spectrochim. Acta, Part A 60, 3291–3298 (2004).
    [CrossRef]
  9. D. S. Bomse, D. C. Hovde, S.-J. Chen, J. A. Silver, “Early fire sensing using near-IR diode laser spectroscopy,” in “Diode Lasers and Applications in Atmospheric Sensing,”, Proc. SPIE 4817, 73–81 (2002).
    [CrossRef]
  10. E. A. Fallows, T. G. Cleary, J. H. Miller, “Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection,” Appl. Opt. 48, 695–703 (2009).
    [CrossRef] [PubMed]
  11. J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011).
    [CrossRef]
  12. B. Scherer, H. Hamid, J. Rosskopf, S. Forouhar, “Compact spectroscopic sensor for air quality monitoring in spacecrafts,” Proc. SPIE 7945, 79450S (2011).
    [CrossRef]
  13. Center for Disease Control and Prevention, “Carbon Monoxide Poisoning: Fact Sheet,” (CDC, 2013) http://www.cdc.gov/co/faqs.htm .
  14. A. Hangauer, “Detection schemes, algorithms and device modeling for tunable diode laser absorption spectroscopy,” Ph.D. thesis, Technische Universität München (2013). In Selected Topics of Semiconductor Physics and Technology, Vol 164, ISBN 978-3-941650-64-0. http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20130412-1113114-0-7 .
  15. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers - comparison of experiment and theory,” Appl. Phys. B: Lasers Opt. 26, 203–210 (1981).
    [CrossRef]
  16. A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
    [CrossRef] [PubMed]
  17. J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B: Lasers Opt. 102, 381–389 (2010).
    [CrossRef]
  18. S. So, E. Jeng, C. Smith, D. Krueger, G. Wysocki, “Next generation infrared sensor instrumentation: remote sensing and sensor networks using the openPHOTONS repository,” Proc. SPIE 7808, 780818 (2010).
    [CrossRef]
  19. A. Hangauer, J. Chen, R. Strzoda, M.-C. Amann, “Laser wavelength stabilization using gases with complex spectral fingerprint,” presented at International Conference on Field Laser Applications in Industry and Research, Garmisch-Partenkirchen, Germany, 2009.
  20. M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
    [CrossRef]
  21. G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
    [CrossRef]
  22. A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
    [CrossRef]
  23. J. Chen, A. Hangauer, R. Strzoda, M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B: Lasers Opt. 100, 331–339 (2010).
    [CrossRef]
  24. European Standard, EN54-7: Fire detection and fire alarm systems - Part 7: Smoke detectors - point detectors using scattered light, transmitted light or ionization (Beuth, 2001).
  25. European Standard, EN54-15: Fire detection and fire alarm systems - Part 15: Point detectors using a combination of detected fire phenomena (Beuth, 2006).
  26. European Standard, EN54-26: Fire detection and fire alarm systems - Part 26: Point fire detectors using carbon monoxide sensors (Beuth, 2008).
  27. American Conference of Governmental Industrial Hygienists, 2005 Threshold Limit Values and Biological Exposure Indices (American Conference of Governmental Industrial Hygienists, 2005).
  28. L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
    [CrossRef]
  29. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452–1461 (2004).
    [CrossRef] [PubMed]
  30. An aerosol mixture for testing of smoke detectors was used. The exact contents are unknown.

2012 (2)

U. Hoefer, D. Gutmacher, “Fire gas detection,” Procedia Eng. 47, 1446–1459 (2012).
[CrossRef]

D. Gutmacher, U. Hoefer, J. Wöllenstein, “Gas sensor technologies for fire detection,” Sens. Actuators B 175, 40–45 (2012).
[CrossRef]

2011 (2)

J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011).
[CrossRef]

B. Scherer, H. Hamid, J. Rosskopf, S. Forouhar, “Compact spectroscopic sensor for air quality monitoring in spacecrafts,” Proc. SPIE 7945, 79450S (2011).
[CrossRef]

2010 (3)

J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B: Lasers Opt. 102, 381–389 (2010).
[CrossRef]

S. So, E. Jeng, C. Smith, D. Krueger, G. Wysocki, “Next generation infrared sensor instrumentation: remote sensing and sensor networks using the openPHOTONS repository,” Proc. SPIE 7808, 780818 (2010).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B: Lasers Opt. 100, 331–339 (2010).
[CrossRef]

2009 (2)

E. A. Fallows, T. G. Cleary, J. H. Miller, “Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection,” Appl. Opt. 48, 695–703 (2009).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, “Advanced quartz-enhanced photoacoustic trace gas sensor for early fire detection,” SAE Int. J. Aerosp. 1, 331–336 (2009).

2008 (2)

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

2007 (3)

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

S.-J. Chen, C. Hovde, K. A. Peterson, A. Marshal, “Fire detection using smoke and gas sensors,” Fire Saf. J. 42, 507–515 (2007).
[CrossRef]

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

2006 (1)

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
[CrossRef]

2005 (1)

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

2004 (2)

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452–1461 (2004).
[CrossRef] [PubMed]

R. Engelbrecht, “A compact NIR fiber-optic diode laser spectrometer for CO and CO2: analysis of observed 2f wavelength modulation spectroscopy line shapes,” Spectrochim. Acta, Part A 60, 3291–3298 (2004).
[CrossRef]

2002 (1)

D. S. Bomse, D. C. Hovde, S.-J. Chen, J. A. Silver, “Early fire sensing using near-IR diode laser spectroscopy,” in “Diode Lasers and Applications in Atmospheric Sensing,”, Proc. SPIE 4817, 73–81 (2002).
[CrossRef]

1981 (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers - comparison of experiment and theory,” Appl. Phys. B: Lasers Opt. 26, 203–210 (1981).
[CrossRef]

Amann, M. C.

J. Chen, A. Hangauer, R. Strzoda, M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B: Lasers Opt. 100, 331–339 (2010).
[CrossRef]

Amann, M.-C.

J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B: Lasers Opt. 102, 381–389 (2010).
[CrossRef]

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
[CrossRef]

A. Hangauer, J. Chen, R. Strzoda, M.-C. Amann, “Laser wavelength stabilization using gases with complex spectral fingerprint,” presented at International Conference on Field Laser Applications in Industry and Research, Garmisch-Partenkirchen, Germany, 2009.

Bachmann, A.

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

Barbe, A.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Benner, D. C.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Birk, M.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Böhm, G.

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
[CrossRef]

Bomse, D. S.

D. S. Bomse, D. C. Hovde, S.-J. Chen, J. A. Silver, “Early fire sensing using near-IR diode laser spectroscopy,” in “Diode Lasers and Applications in Atmospheric Sensing,”, Proc. SPIE 4817, 73–81 (2002).
[CrossRef]

Bradshaw, J. L.

J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011).
[CrossRef]

Brown, L.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Bruno, J. D.

J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011).
[CrossRef]

Carleer, M.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Chackerian, C.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Chance, K.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Chen, J.

J. Chen, A. Hangauer, R. Strzoda, M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B: Lasers Opt. 100, 331–339 (2010).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B: Lasers Opt. 102, 381–389 (2010).
[CrossRef]

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

A. Hangauer, J. Chen, R. Strzoda, M.-C. Amann, “Laser wavelength stabilization using gases with complex spectral fingerprint,” presented at International Conference on Field Laser Applications in Industry and Research, Garmisch-Partenkirchen, Germany, 2009.

Chen, S.-J.

S.-J. Chen, C. Hovde, K. A. Peterson, A. Marshal, “Fire detection using smoke and gas sensors,” Fire Saf. J. 42, 507–515 (2007).
[CrossRef]

D. S. Bomse, D. C. Hovde, S.-J. Chen, J. A. Silver, “Early fire sensing using near-IR diode laser spectroscopy,” in “Diode Lasers and Applications in Atmospheric Sensing,”, Proc. SPIE 4817, 73–81 (2002).
[CrossRef]

Chen, T.-H.

T.-H. Chen, P.-H. Wu, Y.-C. Chiou, “An early fire-detection method based on image processing,” in Proceedings of the 2004 International Conference on Image Processing(2004), pp. 1707–1710.

Chiou, Y.-C.

T.-H. Chen, P.-H. Wu, Y.-C. Chiou, “An early fire-detection method based on image processing,” in Proceedings of the 2004 International Conference on Image Processing(2004), pp. 1707–1710.

Chu, P. M.

Cleary, T. G.

Coudert, L.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Dana, V.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Devi, V.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Dier, O.

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
[CrossRef]

Engelbrecht, R.

R. Engelbrecht, “A compact NIR fiber-optic diode laser spectrometer for CO and CO2: analysis of observed 2f wavelength modulation spectroscopy line shapes,” Spectrochim. Acta, Part A 60, 3291–3298 (2004).
[CrossRef]

Fallows, E. A.

Flaud, J. M.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Fleischer, M.

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Forouhar, S.

B. Scherer, H. Hamid, J. Rosskopf, S. Forouhar, “Compact spectroscopic sensor for air quality monitoring in spacecrafts,” Proc. SPIE 7945, 79450S (2011).
[CrossRef]

Frerichs, H.-P.

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Gamache, R.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Gao, H.

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Goldman, A.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Grau, M.

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
[CrossRef]

Gutmacher, D.

D. Gutmacher, U. Hoefer, J. Wöllenstein, “Gas sensor technologies for fire detection,” Sens. Actuators B 175, 40–45 (2012).
[CrossRef]

U. Hoefer, D. Gutmacher, “Fire gas detection,” Procedia Eng. 47, 1446–1459 (2012).
[CrossRef]

Hamid, H.

B. Scherer, H. Hamid, J. Rosskopf, S. Forouhar, “Compact spectroscopic sensor for air quality monitoring in spacecrafts,” Proc. SPIE 7945, 79450S (2011).
[CrossRef]

Hangauer, A.

J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B: Lasers Opt. 102, 381–389 (2010).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B: Lasers Opt. 100, 331–339 (2010).
[CrossRef]

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

A. Hangauer, “Detection schemes, algorithms and device modeling for tunable diode laser absorption spectroscopy,” Ph.D. thesis, Technische Universität München (2013). In Selected Topics of Semiconductor Physics and Technology, Vol 164, ISBN 978-3-941650-64-0. http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20130412-1113114-0-7 .

A. Hangauer, J. Chen, R. Strzoda, M.-C. Amann, “Laser wavelength stabilization using gases with complex spectral fingerprint,” presented at International Conference on Field Laser Applications in Industry and Research, Garmisch-Partenkirchen, Germany, 2009.

Hartmann, J.-M.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Hoefer, U.

U. Hoefer, D. Gutmacher, “Fire gas detection,” Procedia Eng. 47, 1446–1459 (2012).
[CrossRef]

D. Gutmacher, U. Hoefer, J. Wöllenstein, “Gas sensor technologies for fire detection,” Sens. Actuators B 175, 40–45 (2012).
[CrossRef]

Hovde, C.

S.-J. Chen, C. Hovde, K. A. Peterson, A. Marshal, “Fire detection using smoke and gas sensors,” Fire Saf. J. 42, 507–515 (2007).
[CrossRef]

Hovde, D. C.

D. S. Bomse, D. C. Hovde, S.-J. Chen, J. A. Silver, “Early fire sensing using near-IR diode laser spectroscopy,” in “Diode Lasers and Applications in Atmospheric Sensing,”, Proc. SPIE 4817, 73–81 (2002).
[CrossRef]

Jacquemart, D.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Jahjah, M.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in Conference on Lasers and Electro-Optics 2013, paper JW2A.68.

Jauch, P.

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Jeng, E.

S. So, E. Jeng, C. Smith, D. Krueger, G. Wysocki, “Next generation infrared sensor instrumentation: remote sensing and sensor networks using the openPHOTONS repository,” Proc. SPIE 7808, 780818 (2010).
[CrossRef]

Johnson, P. A.

Johnson, T. J.

Jucks, K.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Kashani-Shirazi, K.

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

Kosterev, A. A.

A. A. Kosterev, F. K. Tittel, “Advanced quartz-enhanced photoacoustic trace gas sensor for early fire detection,” SAE Int. J. Aerosp. 1, 331–336 (2009).

Krueger, D.

S. So, E. Jeng, C. Smith, D. Krueger, G. Wysocki, “Next generation infrared sensor instrumentation: remote sensing and sensor networks using the openPHOTONS repository,” Proc. SPIE 7808, 780818 (2010).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers - comparison of experiment and theory,” Appl. Phys. B: Lasers Opt. 26, 203–210 (1981).
[CrossRef]

Lascola, K. M.

J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011).
[CrossRef]

Lauer, C.

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

Leavitt, R. P.

J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011).
[CrossRef]

Lewicki, R.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in Conference on Lasers and Electro-Optics 2013, paper JW2A.68.

Lim, T.

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

Loepfe, M.

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Ma, Y.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in Conference on Lasers and Electro-Optics 2013, paper JW2A.68.

Maki, A.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Mandin, J.-Y.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Marshal, A.

S.-J. Chen, C. Hovde, K. A. Peterson, A. Marshal, “Fire detection using smoke and gas sensors,” Fire Saf. J. 42, 507–515 (2007).
[CrossRef]

Massie, S.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Meyer, R.

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

Miller, J. H.

Müller, K.

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Orphal, J.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Ortsiefer, M.

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
[CrossRef]

Parameswaran, K. R.

J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011).
[CrossRef]

Perrin, A.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Peterson, K. A.

S.-J. Chen, C. Hovde, K. A. Peterson, A. Marshal, “Fire detection using smoke and gas sensors,” Fire Saf. J. 42, 507–515 (2007).
[CrossRef]

Pham, J. T.

J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011).
[CrossRef]

Pohle, R.

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers - comparison of experiment and theory,” Appl. Phys. B: Lasers Opt. 26, 203–210 (1981).
[CrossRef]

Rhoderick, G. C.

Rinsland, C.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Rönneberg, E.

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
[CrossRef]

Rosskopf, J.

B. Scherer, H. Hamid, J. Rosskopf, S. Forouhar, “Compact spectroscopic sensor for air quality monitoring in spacecrafts,” Proc. SPIE 7945, 79450S (2011).
[CrossRef]

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
[CrossRef]

Rothman, L.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Sams, R. L.

Scherer, B.

B. Scherer, H. Hamid, J. Rosskopf, S. Forouhar, “Compact spectroscopic sensor for air quality monitoring in spacecrafts,” Proc. SPIE 7945, 79450S (2011).
[CrossRef]

Schneider, R.

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Sharpe, S. W.

Shau, R.

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
[CrossRef]

Silver, J. A.

D. S. Bomse, D. C. Hovde, S.-J. Chen, J. A. Silver, “Early fire sensing using near-IR diode laser spectroscopy,” in “Diode Lasers and Applications in Atmospheric Sensing,”, Proc. SPIE 4817, 73–81 (2002).
[CrossRef]

Simon, E.

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Smith, C.

S. So, E. Jeng, C. Smith, D. Krueger, G. Wysocki, “Next generation infrared sensor instrumentation: remote sensing and sensor networks using the openPHOTONS repository,” Proc. SPIE 7808, 780818 (2010).
[CrossRef]

Smith, M.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

So, S.

S. So, E. Jeng, C. Smith, D. Krueger, G. Wysocki, “Next generation infrared sensor instrumentation: remote sensing and sensor networks using the openPHOTONS repository,” Proc. SPIE 7808, 780818 (2010).
[CrossRef]

Sollacher, R.

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Sonnenfroh, D. M.

J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011).
[CrossRef]

Stefanski, P.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in Conference on Lasers and Electro-Optics 2013, paper JW2A.68.

Strzoda, R.

J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B: Lasers Opt. 102, 381–389 (2010).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B: Lasers Opt. 100, 331–339 (2010).
[CrossRef]

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

A. Hangauer, J. Chen, R. Strzoda, M.-C. Amann, “Laser wavelength stabilization using gases with complex spectral fingerprint,” presented at International Conference on Field Laser Applications in Industry and Research, Garmisch-Partenkirchen, Germany, 2009.

Tarka, J.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in Conference on Lasers and Electro-Optics 2013, paper JW2A.68.

Tennyson, J.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Tittel, F. K.

A. A. Kosterev, F. K. Tittel, “Advanced quartz-enhanced photoacoustic trace gas sensor for early fire detection,” SAE Int. J. Aerosp. 1, 331–336 (2009).

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in Conference on Lasers and Electro-Optics 2013, paper JW2A.68.

Tolchenov, R.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Toth, R.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Towner, F. J.

J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011).
[CrossRef]

Vander Auwera, J.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Varanasi, P.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Wagner, G.

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Wilbertz, C.

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Windhorn, K.

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
[CrossRef]

Wöllenstein, J.

D. Gutmacher, U. Hoefer, J. Wöllenstein, “Gas sensor technologies for fire detection,” Sens. Actuators B 175, 40–45 (2012).
[CrossRef]

Wu, P.-H.

T.-H. Chen, P.-H. Wu, Y.-C. Chiou, “An early fire-detection method based on image processing,” in Proceedings of the 2004 International Conference on Image Processing(2004), pp. 1707–1710.

Wysocki, G.

S. So, E. Jeng, C. Smith, D. Krueger, G. Wysocki, “Next generation infrared sensor instrumentation: remote sensing and sensor networks using the openPHOTONS repository,” Proc. SPIE 7808, 780818 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (3)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers - comparison of experiment and theory,” Appl. Phys. B: Lasers Opt. 26, 203–210 (1981).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B: Lasers Opt. 102, 381–389 (2010).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B: Lasers Opt. 100, 331–339 (2010).
[CrossRef]

Appl. Spectrosc. (1)

Electron. Lett. (2)

M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006).
[CrossRef]

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

Fire Saf. J. (1)

S.-J. Chen, C. Hovde, K. A. Peterson, A. Marshal, “Fire detection using smoke and gas sensors,” Fire Saf. J. 42, 507–515 (2007).
[CrossRef]

J. Cryst. Growth (1)

G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (4)

S. So, E. Jeng, C. Smith, D. Krueger, G. Wysocki, “Next generation infrared sensor instrumentation: remote sensing and sensor networks using the openPHOTONS repository,” Proc. SPIE 7808, 780818 (2010).
[CrossRef]

J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011).
[CrossRef]

B. Scherer, H. Hamid, J. Rosskopf, S. Forouhar, “Compact spectroscopic sensor for air quality monitoring in spacecrafts,” Proc. SPIE 7945, 79450S (2011).
[CrossRef]

D. S. Bomse, D. C. Hovde, S.-J. Chen, J. A. Silver, “Early fire sensing using near-IR diode laser spectroscopy,” in “Diode Lasers and Applications in Atmospheric Sensing,”, Proc. SPIE 4817, 73–81 (2002).
[CrossRef]

Procedia Eng. (1)

U. Hoefer, D. Gutmacher, “Fire gas detection,” Procedia Eng. 47, 1446–1459 (2012).
[CrossRef]

SAE Int. J. Aerosp. (1)

A. A. Kosterev, F. K. Tittel, “Advanced quartz-enhanced photoacoustic trace gas sensor for early fire detection,” SAE Int. J. Aerosp. 1, 331–336 (2009).

Sens. Actuators B (2)

D. Gutmacher, U. Hoefer, J. Wöllenstein, “Gas sensor technologies for fire detection,” Sens. Actuators B 175, 40–45 (2012).
[CrossRef]

R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007).
[CrossRef]

Spectrochim. Acta, Part A (1)

R. Engelbrecht, “A compact NIR fiber-optic diode laser spectrometer for CO and CO2: analysis of observed 2f wavelength modulation spectroscopy line shapes,” Spectrochim. Acta, Part A 60, 3291–3298 (2004).
[CrossRef]

Other (10)

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in Conference on Lasers and Electro-Optics 2013, paper JW2A.68.

T.-H. Chen, P.-H. Wu, Y.-C. Chiou, “An early fire-detection method based on image processing,” in Proceedings of the 2004 International Conference on Image Processing(2004), pp. 1707–1710.

Center for Disease Control and Prevention, “Carbon Monoxide Poisoning: Fact Sheet,” (CDC, 2013) http://www.cdc.gov/co/faqs.htm .

A. Hangauer, “Detection schemes, algorithms and device modeling for tunable diode laser absorption spectroscopy,” Ph.D. thesis, Technische Universität München (2013). In Selected Topics of Semiconductor Physics and Technology, Vol 164, ISBN 978-3-941650-64-0. http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20130412-1113114-0-7 .

A. Hangauer, J. Chen, R. Strzoda, M.-C. Amann, “Laser wavelength stabilization using gases with complex spectral fingerprint,” presented at International Conference on Field Laser Applications in Industry and Research, Garmisch-Partenkirchen, Germany, 2009.

European Standard, EN54-7: Fire detection and fire alarm systems - Part 7: Smoke detectors - point detectors using scattered light, transmitted light or ionization (Beuth, 2001).

European Standard, EN54-15: Fire detection and fire alarm systems - Part 15: Point detectors using a combination of detected fire phenomena (Beuth, 2006).

European Standard, EN54-26: Fire detection and fire alarm systems - Part 26: Point fire detectors using carbon monoxide sensors (Beuth, 2008).

American Conference of Governmental Industrial Hygienists, 2005 Threshold Limit Values and Biological Exposure Indices (American Conference of Governmental Industrial Hygienists, 2005).

An aerosol mixture for testing of smoke detectors was used. The exact contents are unknown.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a typical TDLAS system employing wavelength modulation spectroscopy as detection method.

Fig. 2
Fig. 2

Schematic of the optical cell (a) which provides an absorption path length of 10 cm. The photodetector housing is filled with CH4 and used for wavelength stabilization which spares a separate reference cell. A photograph of the prototype including electronics for calculation of concentration values is shown on the right.

Fig. 3
Fig. 3

Sensor performance (left) and recorded wide scan (right) for 100 μL/L CO in ambient air and 0.1 L/L CH4 in the detector housing

Fig. 4
Fig. 4

Experimental setup: The gas inlet for the laser based CO sensor is at the ceiling in 3 m distance of the test fire. A commercial reference CO analyzer was also employed but the gas inlet is at a different position on the 3 m circle. For class B fires additional air circulation is employed in the room to enable better distribution of the combustion gases. The fire is ended and the room is purged with fresh air when the transmission of the air in the room falls below a certain threshold (determined with the reference smoke detector).

Fig. 5
Fig. 5

Measured CO concentrations with laser based sensor (solid) and the reference analyzer (dashed). The deviations are attributed to different measurement positions and the missing air circulation in the test room.

Fig. 6
Fig. 6

Measured CO concentrations with laser based sensor (solid) and the reference analyzer (dashed). The fires cease very quickly and generate very low concentrations of CO because of the nearly complete burning with open flames.

Fig. 7
Fig. 7

Tests under conditions suspected to create cross-sensitivities, either by releasing the substance in the room in front of the sensor (room) or directly into the sensor gas inlet (direct). Four smokers are standing below the sensor, whereas at 6 min a cigarette is hold directly in front of the sensor gas inlet. The constant offset of 5 μL/L is either due to an incompletely purged room or the sensor baseline of a few μL/L.

Fig. 8
Fig. 8

Single, non-averaged spectral scans under conditions shown in Fig. 7. The absolute decrease in photocurrent indicates an absolute broad-band absorbance of 7.4 % for aerosols and 3.6 % for hairspray (top). The fine structure changes in the second harmonic spectrum (especially in the range 2.365 μm to 2.3655 μm) that cause the false absorption signal are also clearly visible, but orders of magnitudes lower in the 10−4 range (bottom).

Tables (1)

Tables Icon

Table 1 Overview of test fires used in this experiment and expected generation of gases and heat during this type of fire. − means that no measurable concentration is generated and the number of pluses indicate the relative amount of gas/temperature generated among the test fires.

Metrics