Abstract

We propose an optical pseudoscopic to orthoscopic conversion method for integral imaging using a lens-array holographic optical element (LAHOE), which solves the pseudoscopic problem. The LAHOE reconstructs an array of diverging spherical waves when a probe wave with the phase-conjugated condition is imposed on it, while an array of converging spherical waves is reconstructed in ordinary reconstruction. For given pseudoscopic elemental images, the array of the diverging spherical waves integrates the orthoscopic three-dimensional images without a distortion. The principle of the proposed method is verified by the experiments of displaying the integral imaging on the LAHOE using computer generated and optically acquired elemental images.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [CrossRef]
  2. B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technology (Springer, 2002).
  3. S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
    [CrossRef]
  4. G. Lippmann, “La photograhie integrale,” Comptes Rendus Acad. Sci., Paris, CR (East Lansing, Mich.) 146, 446–451 (1908).
  5. J.-H. Park, K. Hong, B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [CrossRef] [PubMed]
  6. H. E. Ives, “Optical properties of a Lippmann lenticulated sheet,” J. Opt. Soc. Am. 21(3), 171–179 (1931).
    [CrossRef]
  7. F. Okano, H. Hoshino, J. Arai, I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
    [CrossRef] [PubMed]
  8. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
    [CrossRef] [PubMed]
  9. D. H. Shin, B. G. Lee, E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
    [CrossRef]
  10. J.-H. Jung, J. Kim, B. Lee, “Solution of pseudoscopic problem in integral imaging for real-time processing,” Opt. Lett. 38(1), 76–78 (2013).
    [CrossRef] [PubMed]
  11. J. Kim, J.-H. Jung, C. Jang, B. Lee, “Real-time capturing and 3D visualization method based on integral imaging,” Opt. Express 21(16), 18742–18753 (2013).
    [CrossRef] [PubMed]
  12. J.-S. Jang, B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12(6), 1077–1083 (2004).
    [CrossRef] [PubMed]
  13. J. Arai, H. Kawai, F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
    [CrossRef] [PubMed]
  14. K. Hong, J. Yeom, C. Jang, J. Hong, B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
    [CrossRef] [PubMed]
  15. Y. Jeong, S. Jung, J.-H. Park, B. Lee, “Reflection-type integral imaging scheme for displaying three-dimensional images,” Opt. Lett. 27(9), 704–706 (2002).
    [CrossRef] [PubMed]
  16. R. R. A. Syms, L. Solymar, “Analysis of volume holographic cylindrical lenses,” J. Opt. Soc. Am. 72(2), 179–186 (1982).
    [CrossRef]
  17. R. R. A. Syms, L. Solymar, “Higher diffraction orders in on-axis holographic lenses,” Appl. Opt. 21(18), 3263–3268 (1982).
    [CrossRef] [PubMed]
  18. Y. Luo, J. Castro, J. K. Barton, R. K. Kostuk, G. Barbastathis, “Simulations and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems,” Opt. Express 18(18), 19273–19285 (2010).
    [CrossRef] [PubMed]
  19. Y. Lim, J. Hahn, B. Lee, “Phase-conjugate holographic lithography based on micromirror array recording,” Appl. Opt. 50(34), H68–H74 (2011).
    [CrossRef] [PubMed]
  20. R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).
  21. J.-S. Jang, B. Javidi, “Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42(7), 1869–1870 (2003).
    [CrossRef]

2014 (2)

S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[CrossRef]

K. Hong, J. Yeom, C. Jang, J. Hong, B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
[CrossRef] [PubMed]

2013 (3)

2011 (1)

2010 (1)

2009 (2)

J.-H. Park, K. Hong, B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[CrossRef] [PubMed]

D. H. Shin, B. G. Lee, E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

2003 (1)

J.-S. Jang, B. Javidi, “Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42(7), 1869–1870 (2003).
[CrossRef]

2002 (1)

1997 (1)

1982 (2)

1931 (1)

1908 (1)

G. Lippmann, “La photograhie integrale,” Comptes Rendus Acad. Sci., Paris, CR (East Lansing, Mich.) 146, 446–451 (1908).

Arai, J.

Barbastathis, G.

Barton, J. K.

Castro, J.

Chen, N.

S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[CrossRef]

Hahn, J.

Hong, J.

Hong, J.-Y.

S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[CrossRef]

Hong, K.

Hoshino, H.

Ives, H. E.

Jang, C.

Jang, J.-S.

J.-S. Jang, B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12(6), 1077–1083 (2004).
[CrossRef] [PubMed]

J.-S. Jang, B. Javidi, “Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42(7), 1869–1870 (2003).
[CrossRef]

Javidi, B.

Jeong, Y.

S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[CrossRef]

Y. Jeong, S. Jung, J.-H. Park, B. Lee, “Reflection-type integral imaging scheme for displaying three-dimensional images,” Opt. Lett. 27(9), 704–706 (2002).
[CrossRef] [PubMed]

Jung, J.-H.

Jung, S.

Kawai, H.

Kim, E.-S.

D. H. Shin, B. G. Lee, E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
[CrossRef]

Kim, J.

Kostuk, R. K.

Lee, B.

Lee, B. G.

D. H. Shin, B. G. Lee, E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
[CrossRef]

Lim, Y.

Lippmann, G.

G. Lippmann, “La photograhie integrale,” Comptes Rendus Acad. Sci., Paris, CR (East Lansing, Mich.) 146, 446–451 (1908).

Luo, Y.

Martínez-Corral, M.

Martínez-Cuenca, R.

Okano, F.

Park, J.-H.

Park, S.-

S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[CrossRef]

Saavedra, G.

Shin, D. H.

D. H. Shin, B. G. Lee, E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
[CrossRef]

Solymar, L.

Syms, R. R. A.

Yeom, J.

K. Hong, J. Yeom, C. Jang, J. Hong, B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
[CrossRef] [PubMed]

S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[CrossRef]

Yuyama, I.

Appl. Opt. (5)

Comptes Rendus Acad. Sci., Paris, CR (East Lansing, Mich.) (1)

G. Lippmann, “La photograhie integrale,” Comptes Rendus Acad. Sci., Paris, CR (East Lansing, Mich.) 146, 446–451 (1908).

J. Inf. Disp. (1)

S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Eng. (1)

J.-S. Jang, B. Javidi, “Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42(7), 1869–1870 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lasers Eng. (1)

D. H. Shin, B. G. Lee, E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
[CrossRef]

Opt. Lett. (3)

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[CrossRef]

Other (2)

B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technology (Springer, 2002).

R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).

Supplementary Material (2)

» Media 1: MOV (2907 KB)     
» Media 2: MOV (2795 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

PS problem in the InIm: (a) pickup process of 3D objects, display processes with (b) the PS elemental images, (c) the numerical conversion method, and (d) the optical conversion method to solve the PS problem.

Fig. 2
Fig. 2

Recording and reconstruction geometry of the LAHOE: (a) recording process of the LAHOE, reconstruction process of the LAHOE for (b) the ordinary reconstruction, and (c) the phase-conjugated reconstruction.

Fig. 3
Fig. 3

Schematic diagram for the integration of the OS 3D images by using the phase-conjugated probe wave with the PS elemental images on the LAHOE.

Fig. 4
Fig. 4

Wave vector space diagrams corresponding to the single lens region in the LAHOE: (a) recording geometry of the LAHOE on the holographic material, reconstruction geometries with (b) the ordinary reconstruction and (c) the phase-conjugated reconstruction. The wave vector space diagrams for (d) the ordinary reconstruction and (e) the phase-conjugated reconstruction.

Fig. 5
Fig. 5

Intensity profile of the reconstructed wavefront from the LAHOE: (a) experimental setup for capturing intensity profiles of the LAHOE, captured intensity profiles at 20 mm and 40 mm in front of the LAHOE in (b) the ordinary reconstruction, and (c) the phase-conjugated reconstruction.

Fig. 6
Fig. 6

Experimental setup for the display experiments: (a) the experimental setup for displaying the InIm on the LAHOE, (b) the computer generated elemental images, (c) the optically acquired elemental images, and (d) experimental setup for optical pickup of the objects.

Fig. 7
Fig. 7

Experimental results with the computer generated elemental images by (a) the ordinary reconstruction, and (b) the phase-conjugated reconstruction.

Fig. 8
Fig. 8

Experimental results with the optically acquired elemental images by (a) the ordinary reconstruction (Media 1), and (b) the phase-conjugated reconstruction (Media 2).

Tables (1)

Tables Icon

Table 1 Specifications for the recording and display experiments of LAHOE

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ HOE =2 tan 1 ( p LA 2 f LA ),
K= k s k r .
k d =K+ k r = k s ,
k d = K * + k r * = k s * ,

Metrics