Abstract

In this paper we report on the realization of a deep-UV light source using the 1.3 μm transition of neodymium as pumping wavelength. The 191.7 nm radiation was obtained by generating the seventh harmonic of a high-power Q-switched 1342 nm Nd:YVO4 laser. A cesium lithium borate crystal was used for sum frequency mixing of the sixth harmonic and the fundamental. With a total of four conversion stages, up to 240 mW were achieved, with excellent beam quality at 155 mW (M2 < 1.7) and 190 mW (M2 < 1.9).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Albert, Y. Hibino, M. Kawachi, B. Malo, F. Bilodeau, D. C. Johnson, K. O. Hill, “Photosensitivity in Ge-doped silica optical waveguides and fibers with 193-nm light from an ArF excimer laser,” Opt. Lett. 19, 387–389 (1994).
    [PubMed]
  2. Y. Ran, L. Jin, Y.-N. Tan, L.-P. Sun, J. Li, B.-O. Guan, “Strong Bragg grating inscription in microfibers with 193 nm excimer laser,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), JW2A.4.
  3. A. Nebel, R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw modelocked Ti:Al2O3 laser radiation,” Opt. Comm. 94, 369–372 (1992).
    [CrossRef]
  4. C. T. Chen, T. Kanai, X. Y. Wang, Y. Zhu, S. Watanabe, “High-average-power light source below 200 nm from a KBe2BO3F2 prism-coupled device,” Opt. Lett. 33, 282–284 (2008).
    [CrossRef] [PubMed]
  5. T. Kanai, X. Wang, S. Adachi, S. Watanabe, C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17, 8696–8703 (2009).
    [CrossRef] [PubMed]
  6. T. Ohtsuki, H. Kitano, H. Kawai, S. Owa, “193-nm generation by eighth harmonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2000), CMU4.
  7. H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2003), CTuT4.
  8. J. Sakuma, K. Deki, A. Finch, Y. Ohsako, T. Yokota, “All-Solid-State, High-Power, Deep-UV Laser System Based on Cascaded Sum-Frequency Mixing in CsLiB6O10 Crystals,” Appl. Opt. 39, 5505–5511 (2000).
    [CrossRef]
  9. J. Sakuma, K. Moriizumi, H. Kusunose, “True CW 193.4-nm light generation based on frequency conversion of fiber amplifiers,” Opt. Express 19, 15020–15025 (2011).
    [CrossRef] [PubMed]
  10. M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
    [CrossRef]
  11. A. Borsutzky, R. Bruenger, R. Wallenstein, “Tunable UV radiation at short wavelengths (188 – 240 nm) generated by sum-frequency mixing in lithium borate,” Appl. Phys. B 52, 380–384 (1991).
    [CrossRef]
  12. C. E. Hamilton, C. B. Doughty, P. M. Roper, R. D. Mead, S. C. Tidwell, “All solid-state, single-frequency 193-nm laser system for deep-UV metrology,” in Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE (Vol. 1), 322–323 (1998).
    [CrossRef]
  13. N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, Z.-G. Hu, M. Yoshimura, Y. Mori, T. Sasaki, “200-mW-average Power Ultraviolet Generation at 0.193 μm in K2Al2B2O7,” Appl. Opt. 42, 2716–2719 (2003).
    [CrossRef] [PubMed]
  14. J. J. Jacob, A. J. Merriam, “Development of a 5-kHz solid state 193-nm actinic light source for photomask metrology and review,” Proc. SPIE5567, 24th Annual BACUS Symposium on Photomask Technology, 1099–1106 (2004).
  15. A. J. Merriam, J. J. Jacob, D. S. Bethune, J. A. Hoffnagle, “Efficient Nonlinear Frequency Conversion to 193-nm Using Cooled BBO,” in Advanced Solid-State Photonics (Optical Society of America, 2007), MB11.
  16. F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
    [CrossRef]
  17. M. Okada, S. Ieiri, “Influence of self-induced thermal effects on second-harmonic generation,” IEEE J. Quantum Electron. QE-7, 469–470 (1971).
    [CrossRef]
  18. M. Okada, S. Ieiri, “Influences of self-induced thermal effects on phase matching in nonlinear optical crystals,” IEEE J. Quantum Electron. QE-7, 560–563 (1971).
    [CrossRef]
  19. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
    [CrossRef] [PubMed]
  20. Y. K. Yap, T. Inoue, H. Sakai, Y. Kagebayashi, Y. Mori, T. Sasaki, K. Deki, M. Horiguchi, “Long-term operation of CsLiB6O10 at elevated crystal temperature,” Opt. Lett. 23, 34–36 (1998).
    [CrossRef]
  21. K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and β-BaB2O4,” Opt. Mater. Express 4, 559–567 (2014).
    [CrossRef]

2014

2013

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[CrossRef]

2011

2009

T. Kanai, X. Wang, S. Adachi, S. Watanabe, C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17, 8696–8703 (2009).
[CrossRef] [PubMed]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[CrossRef]

2008

2003

2000

1998

1994

1992

A. Nebel, R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw modelocked Ti:Al2O3 laser radiation,” Opt. Comm. 94, 369–372 (1992).
[CrossRef]

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[CrossRef] [PubMed]

1991

A. Borsutzky, R. Bruenger, R. Wallenstein, “Tunable UV radiation at short wavelengths (188 – 240 nm) generated by sum-frequency mixing in lithium borate,” Appl. Phys. B 52, 380–384 (1991).
[CrossRef]

1971

M. Okada, S. Ieiri, “Influence of self-induced thermal effects on second-harmonic generation,” IEEE J. Quantum Electron. QE-7, 469–470 (1971).
[CrossRef]

M. Okada, S. Ieiri, “Influences of self-induced thermal effects on phase matching in nonlinear optical crystals,” IEEE J. Quantum Electron. QE-7, 560–563 (1971).
[CrossRef]

Adachi, S.

Albert, J.

Ando, M.

Bartschke, J.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[CrossRef]

Bauer, T.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[CrossRef]

Beigang, R.

A. Nebel, R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw modelocked Ti:Al2O3 laser radiation,” Opt. Comm. 94, 369–372 (1992).
[CrossRef]

Bethune, D. S.

A. J. Merriam, J. J. Jacob, D. S. Bethune, J. A. Hoffnagle, “Efficient Nonlinear Frequency Conversion to 193-nm Using Cooled BBO,” in Advanced Solid-State Photonics (Optical Society of America, 2007), MB11.

Bilodeau, F.

Borsutzky, A.

A. Borsutzky, R. Bruenger, R. Wallenstein, “Tunable UV radiation at short wavelengths (188 – 240 nm) generated by sum-frequency mixing in lithium borate,” Appl. Phys. B 52, 380–384 (1991).
[CrossRef]

Bruenger, R.

A. Borsutzky, R. Bruenger, R. Wallenstein, “Tunable UV radiation at short wavelengths (188 – 240 nm) generated by sum-frequency mixing in lithium borate,” Appl. Phys. B 52, 380–384 (1991).
[CrossRef]

Chen, C.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[CrossRef]

T. Kanai, X. Wang, S. Adachi, S. Watanabe, C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17, 8696–8703 (2009).
[CrossRef] [PubMed]

Chen, C. T.

Deki, K.

DeSalvo, R.

Doi, M.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2003), CTuT4.

Doughty, C. B.

C. E. Hamilton, C. B. Doughty, P. M. Roper, R. D. Mead, S. C. Tidwell, “All solid-state, single-frequency 193-nm laser system for deep-UV metrology,” in Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE (Vol. 1), 322–323 (1998).
[CrossRef]

Finch, A.

Guan, B.-O.

Y. Ran, L. Jin, Y.-N. Tan, L.-P. Sun, J. Li, B.-O. Guan, “Strong Bragg grating inscription in microfibers with 193 nm excimer laser,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), JW2A.4.

Hagan, D. J.

Hamilton, C. E.

C. E. Hamilton, C. B. Doughty, P. M. Roper, R. D. Mead, S. C. Tidwell, “All solid-state, single-frequency 193-nm laser system for deep-UV metrology,” in Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE (Vol. 1), 322–323 (1998).
[CrossRef]

Hibino, Y.

Hill, K. O.

Hoffnagle, J. A.

A. J. Merriam, J. J. Jacob, D. S. Bethune, J. A. Hoffnagle, “Efficient Nonlinear Frequency Conversion to 193-nm Using Cooled BBO,” in Advanced Solid-State Photonics (Optical Society of America, 2007), MB11.

Horiguchi, M.

Hu, Z.-G.

Ieiri, S.

M. Okada, S. Ieiri, “Influences of self-induced thermal effects on phase matching in nonlinear optical crystals,” IEEE J. Quantum Electron. QE-7, 560–563 (1971).
[CrossRef]

M. Okada, S. Ieiri, “Influence of self-induced thermal effects on second-harmonic generation,” IEEE J. Quantum Electron. QE-7, 469–470 (1971).
[CrossRef]

Imade, M.

Inoue, T.

Jacob, J. J.

A. J. Merriam, J. J. Jacob, D. S. Bethune, J. A. Hoffnagle, “Efficient Nonlinear Frequency Conversion to 193-nm Using Cooled BBO,” in Advanced Solid-State Photonics (Optical Society of America, 2007), MB11.

J. J. Jacob, A. J. Merriam, “Development of a 5-kHz solid state 193-nm actinic light source for photomask metrology and review,” Proc. SPIE5567, 24th Annual BACUS Symposium on Photomask Technology, 1099–1106 (2004).

Jin, L.

Y. Ran, L. Jin, Y.-N. Tan, L.-P. Sun, J. Li, B.-O. Guan, “Strong Bragg grating inscription in microfibers with 193 nm excimer laser,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), JW2A.4.

Johnson, D. C.

Kaenders, W.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[CrossRef]

Kagebayashi, Y.

Kanai, T.

Kato, K.

Kawachi, M.

Kawai, H.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2003), CTuT4.

T. Ohtsuki, H. Kitano, H. Kawai, S. Owa, “193-nm generation by eighth harmonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2000), CMU4.

Kitano, H.

T. Ohtsuki, H. Kitano, H. Kawai, S. Owa, “193-nm generation by eighth harmonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2000), CMU4.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2003), CTuT4.

Kusunose, H.

L’huillier, J. A.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[CrossRef]

Leisching, P.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[CrossRef]

Lenhardt, F.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[CrossRef]

Li, J.

Y. Ran, L. Jin, Y.-N. Tan, L.-P. Sun, J. Li, B.-O. Guan, “Strong Bragg grating inscription in microfibers with 193 nm excimer laser,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), JW2A.4.

Li, R.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[CrossRef]

Malo, B.

Matsuura, H.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2003), CTuT4.

Mead, R. D.

C. E. Hamilton, C. B. Doughty, P. M. Roper, R. D. Mead, S. C. Tidwell, “All solid-state, single-frequency 193-nm laser system for deep-UV metrology,” in Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE (Vol. 1), 322–323 (1998).
[CrossRef]

Merriam, A. J.

J. J. Jacob, A. J. Merriam, “Development of a 5-kHz solid state 193-nm actinic light source for photomask metrology and review,” Proc. SPIE5567, 24th Annual BACUS Symposium on Photomask Technology, 1099–1106 (2004).

A. J. Merriam, J. J. Jacob, D. S. Bethune, J. A. Hoffnagle, “Efficient Nonlinear Frequency Conversion to 193-nm Using Cooled BBO,” in Advanced Solid-State Photonics (Optical Society of America, 2007), MB11.

Miwa, S.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2003), CTuT4.

Mori, Y.

Moriizumi, K.

Nebel, A.

A. Nebel, R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw modelocked Ti:Al2O3 laser radiation,” Opt. Comm. 94, 369–372 (1992).
[CrossRef]

Nittmann, M.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[CrossRef]

Ohsako, Y.

Ohtsuki, T.

T. Ohtsuki, H. Kitano, H. Kawai, S. Owa, “193-nm generation by eighth harmonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2000), CMU4.

Okada, M.

M. Okada, S. Ieiri, “Influence of self-induced thermal effects on second-harmonic generation,” IEEE J. Quantum Electron. QE-7, 469–470 (1971).
[CrossRef]

M. Okada, S. Ieiri, “Influences of self-induced thermal effects on phase matching in nonlinear optical crystals,” IEEE J. Quantum Electron. QE-7, 560–563 (1971).
[CrossRef]

Opalevs, D.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[CrossRef]

Owa, S.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2003), CTuT4.

T. Ohtsuki, H. Kitano, H. Kawai, S. Owa, “193-nm generation by eighth harmonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2000), CMU4.

Ran, Y.

Y. Ran, L. Jin, Y.-N. Tan, L.-P. Sun, J. Li, B.-O. Guan, “Strong Bragg grating inscription in microfibers with 193 nm excimer laser,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), JW2A.4.

Roper, P. M.

C. E. Hamilton, C. B. Doughty, P. M. Roper, R. D. Mead, S. C. Tidwell, “All solid-state, single-frequency 193-nm laser system for deep-UV metrology,” in Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE (Vol. 1), 322–323 (1998).
[CrossRef]

Sakai, H.

Sakuma, J.

Sasaki, T.

Scholz, M.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[CrossRef]

Sheik-Bahae, M.

Stegeman, G.

Sun, L.-P.

Y. Ran, L. Jin, Y.-N. Tan, L.-P. Sun, J. Li, B.-O. Guan, “Strong Bragg grating inscription in microfibers with 193 nm excimer laser,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), JW2A.4.

Suzuki, K.

Takachiho, K.

Takahashi, Y.

Takaoka, E.

Tan, Y.-N.

Y. Ran, L. Jin, Y.-N. Tan, L.-P. Sun, J. Li, B.-O. Guan, “Strong Bragg grating inscription in microfibers with 193 nm excimer laser,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), JW2A.4.

Tidwell, S. C.

C. E. Hamilton, C. B. Doughty, P. M. Roper, R. D. Mead, S. C. Tidwell, “All solid-state, single-frequency 193-nm laser system for deep-UV metrology,” in Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE (Vol. 1), 322–323 (1998).
[CrossRef]

Tokuhisa, A.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2003), CTuT4.

Umemura, N.

Van Stryland, E. W.

Vanherzeele, H.

Wallenstein, R.

A. Borsutzky, R. Bruenger, R. Wallenstein, “Tunable UV radiation at short wavelengths (188 – 240 nm) generated by sum-frequency mixing in lithium borate,” Appl. Phys. B 52, 380–384 (1991).
[CrossRef]

Wang, G.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[CrossRef]

Wang, X.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[CrossRef]

T. Kanai, X. Wang, S. Adachi, S. Watanabe, C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17, 8696–8703 (2009).
[CrossRef] [PubMed]

Wang, X. Y.

Watanabe, S.

Yap, Y. K.

Yokota, T.

Yoshimura, M.

Zhu, Y.

Appl. Opt.

Appl. Phys. B

A. Borsutzky, R. Bruenger, R. Wallenstein, “Tunable UV radiation at short wavelengths (188 – 240 nm) generated by sum-frequency mixing in lithium borate,” Appl. Phys. B 52, 380–384 (1991).
[CrossRef]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[CrossRef]

Appl. Phys. Lett.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103, 051114 (2013).
[CrossRef]

IEEE J. Quantum Electron.

M. Okada, S. Ieiri, “Influence of self-induced thermal effects on second-harmonic generation,” IEEE J. Quantum Electron. QE-7, 469–470 (1971).
[CrossRef]

M. Okada, S. Ieiri, “Influences of self-induced thermal effects on phase matching in nonlinear optical crystals,” IEEE J. Quantum Electron. QE-7, 560–563 (1971).
[CrossRef]

Opt. Comm.

A. Nebel, R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw modelocked Ti:Al2O3 laser radiation,” Opt. Comm. 94, 369–372 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Other

C. E. Hamilton, C. B. Doughty, P. M. Roper, R. D. Mead, S. C. Tidwell, “All solid-state, single-frequency 193-nm laser system for deep-UV metrology,” in Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE (Vol. 1), 322–323 (1998).
[CrossRef]

J. J. Jacob, A. J. Merriam, “Development of a 5-kHz solid state 193-nm actinic light source for photomask metrology and review,” Proc. SPIE5567, 24th Annual BACUS Symposium on Photomask Technology, 1099–1106 (2004).

A. J. Merriam, J. J. Jacob, D. S. Bethune, J. A. Hoffnagle, “Efficient Nonlinear Frequency Conversion to 193-nm Using Cooled BBO,” in Advanced Solid-State Photonics (Optical Society of America, 2007), MB11.

Y. Ran, L. Jin, Y.-N. Tan, L.-P. Sun, J. Li, B.-O. Guan, “Strong Bragg grating inscription in microfibers with 193 nm excimer laser,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), JW2A.4.

T. Ohtsuki, H. Kitano, H. Kawai, S. Owa, “193-nm generation by eighth harmonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2000), CMU4.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2003), CTuT4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup. For details see text.

Fig. 2
Fig. 2

(a) Characteristic of the average power of the fundamental 1342 nm laser at 10 kHz pulse repetition rate. (b) M2 measurement and beam profile of the 1342 nm laser at 15.2 W output power.

Fig. 3
Fig. 3

(a) Power characteristics of the SHG conversion stage. (b) M2 measurement and beam profile of the second harmonic at a power of 8.73 W.

Fig. 4
Fig. 4

(a) Phase matching curve for SHG from 1342 nm to 671 nm in BiBO. (b) Phase matching curve for THG (SFG from 1342 nm and 671 nm to 447 nm) in LBO. (c) Dependence of the generated power at 447 nm on the temperature of the SHG crystal. For details see text.

Fig. 5
Fig. 5

(a) Characteristic of the average power of the THG conversion stage, the temperatures of the SHG and THG crystal being optimized for maximum THG. (b) M2 measurement and beam profile of the third harmonic at a power of 7.25 W.

Fig. 6
Fig. 6

(a) Dependence of the beam radius of the 447 nm beam inside of the 6HG crystal on the power at 447 nm for three different positions of lens L5. The distance between the THG crystal and lens L5 was increased from A to C. (b) Average power and beam profiles at 224 nm for three different beam radii inside of the 6HG crystal.

Fig. 7
Fig. 7

(a) Average power and beam profiles at 224 nm for a polarization bypass of 25 %. (b) M2 measurement and beam profile of the sixth harmonic at power of 525 mW.

Fig. 8
Fig. 8

Variation of the polarization bypass, measured at a total pump power of 9.45 W at 1342 nm.

Fig. 9
Fig. 9

(a) Power and beam profiles at 191.7 nm for a polarization bypass of 38 %. (b) M2 measurement and beam profile for 190 mW at 191.7 nm (polarization bypass of 38% with 9.45 W total pump power at 1342 nm).

Fig. 10
Fig. 10

Overlay of the pulse traces.

Metrics