Abstract

In reverse engineering, reconstruction of 3D point cloud data is the key step to acquire the final profile of the object. However, the quality of 3D reconstruction is influenced by noise in the three-dimensional measurement. This paper aims to tackle the issue of removing the noisy data from the complex point cloud data. The 3D-GPF (Three Dimensional Global Phase Filtering) global phase filtering method is proposed based on the study of phase filtering method, consisting of the steps below. Firstly, the six-step phase shift profilometry is used to obtain the local phase information, and encoding the obtained phase information. Through the global phase unwrapping method, the global phase can be acquired. Secondly, 3D-GPF method is used for the obtained global phase. Finally, the effect of 3D reconstruction is analyzed after the global phase filtering. Experimental results indicate that the noisy points of three-dimensional graphics is reduced 98.02%, the speed of 3D reconstruction is raised 12%.The effect of the proposed global phase filtering method is better than DCT and GSM methods. It is high precision and fast speed, and can be widely used in other 3D reconstruction application.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. X. Jiao, X. Zhao, Y. Yang, Z. L. Fang, X. C. Yuan, “Dual-camera enabled real-time three-dimensional integral imaging pick-up and display,” Opt. Express 20(25), 27304–27311 (2012).
    [CrossRef] [PubMed]
  2. J. Yang, Z. H. Jia, X. Z. Qin, J. Yang, Y. J. Hu, “BM3D Image Denoising Based on Shape-adaptive Principal Component Analysis,” Comput. Eng. 39(3), 241–244 (2013).
  3. A. Danielyan, Y. W. Wu, P. Y. Shih, Y. Dembitskaya and A. Semyanov, “Denoising of two-photon fluorescence images with Block-Matching 3D filtering,” Methods, Japan, Epub 20 Mar. (2014).
  4. C. Q. Kang, W. Q. Cao, L. Hua, L. Fang, H. Chen, “Infrared image denoising algorithm via two-stage 3D filtering,” Laser Infrared. 43(3), 261–264 (2013).
  5. L. Theis, R. Hosseini, M. Bethge, “Mixtures of conditional Gaussian scale mixtures applied to multiscale image representations,” PLoS ONE 7(7), e39857 (2012).
    [CrossRef] [PubMed]
  6. B. Goossens, A. Pizurica, W. Philips, “Image denoising using mixtures of projected Gaussian Scale Mixtures,” IEEE Trans. Image Process. 18(8), 1689–1702 (2009).
    [CrossRef] [PubMed]
  7. X. Wu, S. J. Liu, M. Wu, H. Q. Sun, J. L. Zhou, Q. Y. Gong, Z. H. Ding, “Nonlocal denoising using anisotropic structure tensor for 3D MRI,” Med. Phys. 40(10), 101904 (2013).
    [CrossRef] [PubMed]
  8. L. Li, W. Hou, X. Zhang, M. Ding, “GPU-based block-wise nonlocal means denoising for 3D ultrasound images,” Comput. Math. Methods Med. 2013, 921303 (2013).
    [CrossRef] [PubMed]
  9. X. M. Chen, L. T. Jiang, R. D. Ying, “Research of 3D reconstruction and filtering algorithm based on depth information of Kinect,” Appl. Res. Comput. 30(4), 1216–1218 (2013).
  10. H. B. Yu, D. Z. Feng, Y. Cao, X. K. Yao, “Three-dimensional Space-time Nonadaptive Pre-filtering Approach in Airborne Radar,” J. Electron. Inf. Technol. 36(1), 215–219 (2014).
  11. L. M. Song, X. X. Dong, J. T. Xi, Y. G. Yu, C. K. Yang, “A new phase unwrapping algorithm based on Three Wavelength Phase Shift Profilometry method,” Opt. Laser Technol. 45, 319–329 (2013).
    [CrossRef]
  12. L. M. Song, C. M. Chen, L. Zhang, X. X. Dong, “High Precision Global Phase Unwrapping Method Used in the Multi-frequency 3D Measurement,” Opt. Electron Eng. 39(12), 18–25 (2012).

2014

H. B. Yu, D. Z. Feng, Y. Cao, X. K. Yao, “Three-dimensional Space-time Nonadaptive Pre-filtering Approach in Airborne Radar,” J. Electron. Inf. Technol. 36(1), 215–219 (2014).

2013

L. M. Song, X. X. Dong, J. T. Xi, Y. G. Yu, C. K. Yang, “A new phase unwrapping algorithm based on Three Wavelength Phase Shift Profilometry method,” Opt. Laser Technol. 45, 319–329 (2013).
[CrossRef]

X. Wu, S. J. Liu, M. Wu, H. Q. Sun, J. L. Zhou, Q. Y. Gong, Z. H. Ding, “Nonlocal denoising using anisotropic structure tensor for 3D MRI,” Med. Phys. 40(10), 101904 (2013).
[CrossRef] [PubMed]

L. Li, W. Hou, X. Zhang, M. Ding, “GPU-based block-wise nonlocal means denoising for 3D ultrasound images,” Comput. Math. Methods Med. 2013, 921303 (2013).
[CrossRef] [PubMed]

X. M. Chen, L. T. Jiang, R. D. Ying, “Research of 3D reconstruction and filtering algorithm based on depth information of Kinect,” Appl. Res. Comput. 30(4), 1216–1218 (2013).

J. Yang, Z. H. Jia, X. Z. Qin, J. Yang, Y. J. Hu, “BM3D Image Denoising Based on Shape-adaptive Principal Component Analysis,” Comput. Eng. 39(3), 241–244 (2013).

C. Q. Kang, W. Q. Cao, L. Hua, L. Fang, H. Chen, “Infrared image denoising algorithm via two-stage 3D filtering,” Laser Infrared. 43(3), 261–264 (2013).

2012

L. Theis, R. Hosseini, M. Bethge, “Mixtures of conditional Gaussian scale mixtures applied to multiscale image representations,” PLoS ONE 7(7), e39857 (2012).
[CrossRef] [PubMed]

L. M. Song, C. M. Chen, L. Zhang, X. X. Dong, “High Precision Global Phase Unwrapping Method Used in the Multi-frequency 3D Measurement,” Opt. Electron Eng. 39(12), 18–25 (2012).

X. X. Jiao, X. Zhao, Y. Yang, Z. L. Fang, X. C. Yuan, “Dual-camera enabled real-time three-dimensional integral imaging pick-up and display,” Opt. Express 20(25), 27304–27311 (2012).
[CrossRef] [PubMed]

2009

B. Goossens, A. Pizurica, W. Philips, “Image denoising using mixtures of projected Gaussian Scale Mixtures,” IEEE Trans. Image Process. 18(8), 1689–1702 (2009).
[CrossRef] [PubMed]

Bethge, M.

L. Theis, R. Hosseini, M. Bethge, “Mixtures of conditional Gaussian scale mixtures applied to multiscale image representations,” PLoS ONE 7(7), e39857 (2012).
[CrossRef] [PubMed]

Cao, W. Q.

C. Q. Kang, W. Q. Cao, L. Hua, L. Fang, H. Chen, “Infrared image denoising algorithm via two-stage 3D filtering,” Laser Infrared. 43(3), 261–264 (2013).

Cao, Y.

H. B. Yu, D. Z. Feng, Y. Cao, X. K. Yao, “Three-dimensional Space-time Nonadaptive Pre-filtering Approach in Airborne Radar,” J. Electron. Inf. Technol. 36(1), 215–219 (2014).

Chen, C. M.

L. M. Song, C. M. Chen, L. Zhang, X. X. Dong, “High Precision Global Phase Unwrapping Method Used in the Multi-frequency 3D Measurement,” Opt. Electron Eng. 39(12), 18–25 (2012).

Chen, H.

C. Q. Kang, W. Q. Cao, L. Hua, L. Fang, H. Chen, “Infrared image denoising algorithm via two-stage 3D filtering,” Laser Infrared. 43(3), 261–264 (2013).

Chen, X. M.

X. M. Chen, L. T. Jiang, R. D. Ying, “Research of 3D reconstruction and filtering algorithm based on depth information of Kinect,” Appl. Res. Comput. 30(4), 1216–1218 (2013).

Ding, M.

L. Li, W. Hou, X. Zhang, M. Ding, “GPU-based block-wise nonlocal means denoising for 3D ultrasound images,” Comput. Math. Methods Med. 2013, 921303 (2013).
[CrossRef] [PubMed]

Ding, Z. H.

X. Wu, S. J. Liu, M. Wu, H. Q. Sun, J. L. Zhou, Q. Y. Gong, Z. H. Ding, “Nonlocal denoising using anisotropic structure tensor for 3D MRI,” Med. Phys. 40(10), 101904 (2013).
[CrossRef] [PubMed]

Dong, X. X.

L. M. Song, X. X. Dong, J. T. Xi, Y. G. Yu, C. K. Yang, “A new phase unwrapping algorithm based on Three Wavelength Phase Shift Profilometry method,” Opt. Laser Technol. 45, 319–329 (2013).
[CrossRef]

L. M. Song, C. M. Chen, L. Zhang, X. X. Dong, “High Precision Global Phase Unwrapping Method Used in the Multi-frequency 3D Measurement,” Opt. Electron Eng. 39(12), 18–25 (2012).

Fang, L.

C. Q. Kang, W. Q. Cao, L. Hua, L. Fang, H. Chen, “Infrared image denoising algorithm via two-stage 3D filtering,” Laser Infrared. 43(3), 261–264 (2013).

Fang, Z. L.

Feng, D. Z.

H. B. Yu, D. Z. Feng, Y. Cao, X. K. Yao, “Three-dimensional Space-time Nonadaptive Pre-filtering Approach in Airborne Radar,” J. Electron. Inf. Technol. 36(1), 215–219 (2014).

Gong, Q. Y.

X. Wu, S. J. Liu, M. Wu, H. Q. Sun, J. L. Zhou, Q. Y. Gong, Z. H. Ding, “Nonlocal denoising using anisotropic structure tensor for 3D MRI,” Med. Phys. 40(10), 101904 (2013).
[CrossRef] [PubMed]

Goossens, B.

B. Goossens, A. Pizurica, W. Philips, “Image denoising using mixtures of projected Gaussian Scale Mixtures,” IEEE Trans. Image Process. 18(8), 1689–1702 (2009).
[CrossRef] [PubMed]

Hosseini, R.

L. Theis, R. Hosseini, M. Bethge, “Mixtures of conditional Gaussian scale mixtures applied to multiscale image representations,” PLoS ONE 7(7), e39857 (2012).
[CrossRef] [PubMed]

Hou, W.

L. Li, W. Hou, X. Zhang, M. Ding, “GPU-based block-wise nonlocal means denoising for 3D ultrasound images,” Comput. Math. Methods Med. 2013, 921303 (2013).
[CrossRef] [PubMed]

Hu, Y. J.

J. Yang, Z. H. Jia, X. Z. Qin, J. Yang, Y. J. Hu, “BM3D Image Denoising Based on Shape-adaptive Principal Component Analysis,” Comput. Eng. 39(3), 241–244 (2013).

Hua, L.

C. Q. Kang, W. Q. Cao, L. Hua, L. Fang, H. Chen, “Infrared image denoising algorithm via two-stage 3D filtering,” Laser Infrared. 43(3), 261–264 (2013).

Jia, Z. H.

J. Yang, Z. H. Jia, X. Z. Qin, J. Yang, Y. J. Hu, “BM3D Image Denoising Based on Shape-adaptive Principal Component Analysis,” Comput. Eng. 39(3), 241–244 (2013).

Jiang, L. T.

X. M. Chen, L. T. Jiang, R. D. Ying, “Research of 3D reconstruction and filtering algorithm based on depth information of Kinect,” Appl. Res. Comput. 30(4), 1216–1218 (2013).

Jiao, X. X.

Kang, C. Q.

C. Q. Kang, W. Q. Cao, L. Hua, L. Fang, H. Chen, “Infrared image denoising algorithm via two-stage 3D filtering,” Laser Infrared. 43(3), 261–264 (2013).

Li, L.

L. Li, W. Hou, X. Zhang, M. Ding, “GPU-based block-wise nonlocal means denoising for 3D ultrasound images,” Comput. Math. Methods Med. 2013, 921303 (2013).
[CrossRef] [PubMed]

Liu, S. J.

X. Wu, S. J. Liu, M. Wu, H. Q. Sun, J. L. Zhou, Q. Y. Gong, Z. H. Ding, “Nonlocal denoising using anisotropic structure tensor for 3D MRI,” Med. Phys. 40(10), 101904 (2013).
[CrossRef] [PubMed]

Philips, W.

B. Goossens, A. Pizurica, W. Philips, “Image denoising using mixtures of projected Gaussian Scale Mixtures,” IEEE Trans. Image Process. 18(8), 1689–1702 (2009).
[CrossRef] [PubMed]

Pizurica, A.

B. Goossens, A. Pizurica, W. Philips, “Image denoising using mixtures of projected Gaussian Scale Mixtures,” IEEE Trans. Image Process. 18(8), 1689–1702 (2009).
[CrossRef] [PubMed]

Qin, X. Z.

J. Yang, Z. H. Jia, X. Z. Qin, J. Yang, Y. J. Hu, “BM3D Image Denoising Based on Shape-adaptive Principal Component Analysis,” Comput. Eng. 39(3), 241–244 (2013).

Song, L. M.

L. M. Song, X. X. Dong, J. T. Xi, Y. G. Yu, C. K. Yang, “A new phase unwrapping algorithm based on Three Wavelength Phase Shift Profilometry method,” Opt. Laser Technol. 45, 319–329 (2013).
[CrossRef]

L. M. Song, C. M. Chen, L. Zhang, X. X. Dong, “High Precision Global Phase Unwrapping Method Used in the Multi-frequency 3D Measurement,” Opt. Electron Eng. 39(12), 18–25 (2012).

Sun, H. Q.

X. Wu, S. J. Liu, M. Wu, H. Q. Sun, J. L. Zhou, Q. Y. Gong, Z. H. Ding, “Nonlocal denoising using anisotropic structure tensor for 3D MRI,” Med. Phys. 40(10), 101904 (2013).
[CrossRef] [PubMed]

Theis, L.

L. Theis, R. Hosseini, M. Bethge, “Mixtures of conditional Gaussian scale mixtures applied to multiscale image representations,” PLoS ONE 7(7), e39857 (2012).
[CrossRef] [PubMed]

Wu, M.

X. Wu, S. J. Liu, M. Wu, H. Q. Sun, J. L. Zhou, Q. Y. Gong, Z. H. Ding, “Nonlocal denoising using anisotropic structure tensor for 3D MRI,” Med. Phys. 40(10), 101904 (2013).
[CrossRef] [PubMed]

Wu, X.

X. Wu, S. J. Liu, M. Wu, H. Q. Sun, J. L. Zhou, Q. Y. Gong, Z. H. Ding, “Nonlocal denoising using anisotropic structure tensor for 3D MRI,” Med. Phys. 40(10), 101904 (2013).
[CrossRef] [PubMed]

Xi, J. T.

L. M. Song, X. X. Dong, J. T. Xi, Y. G. Yu, C. K. Yang, “A new phase unwrapping algorithm based on Three Wavelength Phase Shift Profilometry method,” Opt. Laser Technol. 45, 319–329 (2013).
[CrossRef]

Yang, C. K.

L. M. Song, X. X. Dong, J. T. Xi, Y. G. Yu, C. K. Yang, “A new phase unwrapping algorithm based on Three Wavelength Phase Shift Profilometry method,” Opt. Laser Technol. 45, 319–329 (2013).
[CrossRef]

Yang, J.

J. Yang, Z. H. Jia, X. Z. Qin, J. Yang, Y. J. Hu, “BM3D Image Denoising Based on Shape-adaptive Principal Component Analysis,” Comput. Eng. 39(3), 241–244 (2013).

J. Yang, Z. H. Jia, X. Z. Qin, J. Yang, Y. J. Hu, “BM3D Image Denoising Based on Shape-adaptive Principal Component Analysis,” Comput. Eng. 39(3), 241–244 (2013).

Yang, Y.

Yao, X. K.

H. B. Yu, D. Z. Feng, Y. Cao, X. K. Yao, “Three-dimensional Space-time Nonadaptive Pre-filtering Approach in Airborne Radar,” J. Electron. Inf. Technol. 36(1), 215–219 (2014).

Ying, R. D.

X. M. Chen, L. T. Jiang, R. D. Ying, “Research of 3D reconstruction and filtering algorithm based on depth information of Kinect,” Appl. Res. Comput. 30(4), 1216–1218 (2013).

Yu, H. B.

H. B. Yu, D. Z. Feng, Y. Cao, X. K. Yao, “Three-dimensional Space-time Nonadaptive Pre-filtering Approach in Airborne Radar,” J. Electron. Inf. Technol. 36(1), 215–219 (2014).

Yu, Y. G.

L. M. Song, X. X. Dong, J. T. Xi, Y. G. Yu, C. K. Yang, “A new phase unwrapping algorithm based on Three Wavelength Phase Shift Profilometry method,” Opt. Laser Technol. 45, 319–329 (2013).
[CrossRef]

Yuan, X. C.

Zhang, L.

L. M. Song, C. M. Chen, L. Zhang, X. X. Dong, “High Precision Global Phase Unwrapping Method Used in the Multi-frequency 3D Measurement,” Opt. Electron Eng. 39(12), 18–25 (2012).

Zhang, X.

L. Li, W. Hou, X. Zhang, M. Ding, “GPU-based block-wise nonlocal means denoising for 3D ultrasound images,” Comput. Math. Methods Med. 2013, 921303 (2013).
[CrossRef] [PubMed]

Zhao, X.

Zhou, J. L.

X. Wu, S. J. Liu, M. Wu, H. Q. Sun, J. L. Zhou, Q. Y. Gong, Z. H. Ding, “Nonlocal denoising using anisotropic structure tensor for 3D MRI,” Med. Phys. 40(10), 101904 (2013).
[CrossRef] [PubMed]

Appl. Res. Comput.

X. M. Chen, L. T. Jiang, R. D. Ying, “Research of 3D reconstruction and filtering algorithm based on depth information of Kinect,” Appl. Res. Comput. 30(4), 1216–1218 (2013).

Comput. Eng.

J. Yang, Z. H. Jia, X. Z. Qin, J. Yang, Y. J. Hu, “BM3D Image Denoising Based on Shape-adaptive Principal Component Analysis,” Comput. Eng. 39(3), 241–244 (2013).

Comput. Math. Methods Med.

L. Li, W. Hou, X. Zhang, M. Ding, “GPU-based block-wise nonlocal means denoising for 3D ultrasound images,” Comput. Math. Methods Med. 2013, 921303 (2013).
[CrossRef] [PubMed]

IEEE Trans. Image Process.

B. Goossens, A. Pizurica, W. Philips, “Image denoising using mixtures of projected Gaussian Scale Mixtures,” IEEE Trans. Image Process. 18(8), 1689–1702 (2009).
[CrossRef] [PubMed]

J. Electron. Inf. Technol.

H. B. Yu, D. Z. Feng, Y. Cao, X. K. Yao, “Three-dimensional Space-time Nonadaptive Pre-filtering Approach in Airborne Radar,” J. Electron. Inf. Technol. 36(1), 215–219 (2014).

Laser Infrared.

C. Q. Kang, W. Q. Cao, L. Hua, L. Fang, H. Chen, “Infrared image denoising algorithm via two-stage 3D filtering,” Laser Infrared. 43(3), 261–264 (2013).

Med. Phys.

X. Wu, S. J. Liu, M. Wu, H. Q. Sun, J. L. Zhou, Q. Y. Gong, Z. H. Ding, “Nonlocal denoising using anisotropic structure tensor for 3D MRI,” Med. Phys. 40(10), 101904 (2013).
[CrossRef] [PubMed]

Opt. Electron Eng.

L. M. Song, C. M. Chen, L. Zhang, X. X. Dong, “High Precision Global Phase Unwrapping Method Used in the Multi-frequency 3D Measurement,” Opt. Electron Eng. 39(12), 18–25 (2012).

Opt. Express

Opt. Laser Technol.

L. M. Song, X. X. Dong, J. T. Xi, Y. G. Yu, C. K. Yang, “A new phase unwrapping algorithm based on Three Wavelength Phase Shift Profilometry method,” Opt. Laser Technol. 45, 319–329 (2013).
[CrossRef]

PLoS ONE

L. Theis, R. Hosseini, M. Bethge, “Mixtures of conditional Gaussian scale mixtures applied to multiscale image representations,” PLoS ONE 7(7), e39857 (2012).
[CrossRef] [PubMed]

Other

A. Danielyan, Y. W. Wu, P. Y. Shih, Y. Dembitskaya and A. Semyanov, “Denoising of two-photon fluorescence images with Block-Matching 3D filtering,” Methods, Japan, Epub 20 Mar. (2014).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Protecting the six steps PSP with one wavelength onto a fingerprint. (a) The fingerprint to be measured. (b) One of images from the six steps PSP with one wavelength.

Fig. 2
Fig. 2

The partial phase diagram of the line 512

Fig. 3
Fig. 3

The global phase diagram of the line 512

Fig. 4
Fig. 4

The denoising global phase diagram of the line 512

Fig. 5
Fig. 5

A cycle's phase of the encoded point M = 26. (a) The phase diagram before removing the noisy points. (b) The phase diagram after removing the noisy points.

Fig. 6
Fig. 6

The effect of 3D reconstruction. (a) The effect of 3D reconstruction without global phase filter. (b) The effect of 3D reconstruction after global phase filter.

Tables (1)

Tables Icon

Table 1 the number of noisy points and the speed of 3D reconstruction comparison

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I(x)=a(x,y)sin(φ(x,y))
I r (x,y)=b(x,y)+a(x,y)sin(φ(x,y)+δ(x,y))
I rk (x,y)=b(x,y)+a(x,y)sin(φ(x,y)+ π×k 6 ),k=0,1,...,5
φ(x,y)=arctan I r3 (x,y) I r5 (x,y) I r4 (x,y) I r1 (x,y)+( I r3 (x,y) I r5 (x,y))
φ G (x,y)= φ i (x,y)+2π×M(x,y)
λ 12 =| λ 1 × λ 2 λ 1 λ 2 |, λ 23 =| λ 2 × λ 3 λ 2 λ 3 |, λ 123 =| λ 12 × λ 23 λ 12 λ 23 |
M(x,y)={ int( φ 123 (x,y) 2π × λ 123 λ j )× λ j λ i +int( φ j (x,y) 2π × λ j λ i ), φ i (x,y)2πand φ j (x,y)2πand φ 123 (x,y)2π int( φ 123 (x,y) 2π × λ 123 λ j )× λ j λ i +int( φ j (x,y) 2π × λ j λ i )1,( φ i (x,y)=2πor φ j (x,y)=2πand φ 123 (x,y)2π int( φ 123 (x,y) 2π × λ 123 λ j 1)× λ j λ i +int( φ j (x,y) 2π × λ j λ i ), φ i (x,y)2πand φ j (x,y)2πand φ 123 (x,y)=2π
lim x x 1 + f(x)= lim x x 1 - f(x)
lim x x 1 + f'(x)= lim x x 1 - f'(x)
K= y k y j x k x j
K 1 = y j y k x j x k , K 2 = y i y j x i x j
x j x k a(aisaconstant)

Metrics