Abstract

We report a novel means of measuring the acoustic velocity based on a well-known acousto-optic interaction. With an acousto-optic modulator (AOM), we construct an optoelectronic oscillator (OEO) that can measure the acoustic velocity in the AOM directly. The free spectral range between the modes is a function of the total loop length of the OEO, which is mainly dependent on the propagation time of the acoustic wave through the AOM. By changing the propagation time, we measured the acoustic velocity from the variation of the free spectral range. The results are reported and compared with earlier results. This method is insensitive to the variation of the optical phase shift. In addition, the high frequency-stability and microwave spectral purity of the OEO allow reliable and precise measurements.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao, L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [CrossRef]
  2. L. Maleki, “The opto-electronic oscillator (OEO): review and recent progress,” in Proceedings of IEEE Conference on European Frequency and Time Forum (Institute of Electrical and Electronics Engineers, Gothenburg, 2012), pp. 497–500.
    [CrossRef]
  3. M. Haji, L. Hou, A. E. Kelly, J. Akbar, J. H. Marsh, J. M. Arnold, C. N. Ironside, “High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes,” Opt. Express 20(3), 3268–3274 (2012).
    [CrossRef] [PubMed]
  4. D. Strekalov, A. B. Matsko, N. Yu, A. A. Savchenkov, L. Maleki, “Application of vertical cavity surface emitting lasers in self-oscillating atomic clocks,” J. Mod. Opt. 53(16-17), 2469–2484 (2006).
    [CrossRef]
  5. X. S. Yao, L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
    [CrossRef]
  6. O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express 19(7), 5839–5854 (2011).
    [CrossRef] [PubMed]
  7. W. H. Tseng, K. M. Feng, “Impact of fiber delay fluctuation on reference injection-locked optoelectronic oscillators,” Opt. Lett. 37(17), 3525–3527 (2012).
    [CrossRef] [PubMed]
  8. I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
    [CrossRef] [PubMed]
  9. J. M. Kim, D. Cho, “Optoelectronic oscillator stabilized to an intra-loop Fabry-Perot cavity by a dual servo system,” Opt. Express 18(14), 14905–14912 (2010).
    [CrossRef] [PubMed]
  10. F. Kong, W. Li, J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38(14), 2611–2613 (2013).
    [CrossRef] [PubMed]
  11. L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010).
    [CrossRef]
  12. T. Zhang, J. Zhu, T. Guo, J. Wang, S. Ye, “Improving accuracy of distance measurements based on an optoelectronic oscillator by measuring variation of fiber delay,” Appl. Opt. 52(15), 3495–3499 (2013).
    [CrossRef] [PubMed]
  13. Crystal Technology, Palo Alto, California, USA.
  14. N. Uchida, Y. Ohmachi, “Elastic and photoelastic properties of TeO2 single crystal,” J. Appl. Phys. 40(12), 4692–4695 (1969).
    [CrossRef]
  15. A. Vernaleken, M. G. Cohen, H. Metcalf, “Interferometric measurement of acoustic velocity in PbMoO4 and TeO2.,” Appl. Opt. 46(29), 7117–7119 (2007).
    [CrossRef] [PubMed]
  16. D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol. 21(12), 3052–3061 (2003).
    [CrossRef]
  17. S. Tallur and S. A. Bhave, “Monolithic 2 GHz electrostatically actuated MEMS oscillator with opto-mechanical frequency multiplier,” in Proceedings of IEEE Conference on Solid-state Sensors, Actuators and Microsystems (Transducers and Eurosensors, Barcelona, 2013), pp. 1472–1475.

2013 (2)

2012 (2)

2011 (1)

2010 (3)

2007 (1)

2006 (1)

D. Strekalov, A. B. Matsko, N. Yu, A. A. Savchenkov, L. Maleki, “Application of vertical cavity surface emitting lasers in self-oscillating atomic clocks,” J. Mod. Opt. 53(16-17), 2469–2484 (2006).
[CrossRef]

2003 (1)

1996 (2)

X. S. Yao, L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[CrossRef]

X. S. Yao, L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[CrossRef]

1969 (1)

N. Uchida, Y. Ohmachi, “Elastic and photoelastic properties of TeO2 single crystal,” J. Appl. Phys. 40(12), 4692–4695 (1969).
[CrossRef]

Adles, E. J.

Akbar, J.

Akbulut, M.

Arnold, J. M.

Aveline, D.

Carter, G. M.

Cho, D.

Cohen, M. G.

Delfyett, P. J.

Feng, K. M.

Guo, T.

Haji, M.

Hoghooghi, N.

Horowitz, M.

Hou, L.

Ironside, C. N.

Journet, B.

L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010).
[CrossRef]

Kelly, A. E.

Kim, J. M.

Kong, F.

Levy, E. C.

Li, W.

Maleki, L.

D. Strekalov, A. B. Matsko, N. Yu, A. A. Savchenkov, L. Maleki, “Application of vertical cavity surface emitting lasers in self-oscillating atomic clocks,” J. Mod. Opt. 53(16-17), 2469–2484 (2006).
[CrossRef]

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol. 21(12), 3052–3061 (2003).
[CrossRef]

X. S. Yao, L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[CrossRef]

X. S. Yao, L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[CrossRef]

Mandridis, D.

Marsh, J. H.

Matsko, A.

Matsko, A. B.

D. Strekalov, A. B. Matsko, N. Yu, A. A. Savchenkov, L. Maleki, “Application of vertical cavity surface emitting lasers in self-oscillating atomic clocks,” J. Mod. Opt. 53(16-17), 2469–2484 (2006).
[CrossRef]

Menyuk, C. R.

Metcalf, H.

Nakatani, K.

L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010).
[CrossRef]

Nguyen, L. D.

L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010).
[CrossRef]

Ohmachi, Y.

N. Uchida, Y. Ohmachi, “Elastic and photoelastic properties of TeO2 single crystal,” J. Appl. Phys. 40(12), 4692–4695 (1969).
[CrossRef]

Okusaga, O.

Ozdur, I.

Piracha, M. U.

Savchenkov, A. A.

D. Strekalov, A. B. Matsko, N. Yu, A. A. Savchenkov, L. Maleki, “Application of vertical cavity surface emitting lasers in self-oscillating atomic clocks,” J. Mod. Opt. 53(16-17), 2469–2484 (2006).
[CrossRef]

Strekalov, D.

D. Strekalov, A. B. Matsko, N. Yu, A. A. Savchenkov, L. Maleki, “Application of vertical cavity surface emitting lasers in self-oscillating atomic clocks,” J. Mod. Opt. 53(16-17), 2469–2484 (2006).
[CrossRef]

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol. 21(12), 3052–3061 (2003).
[CrossRef]

Thompson, R.

Tseng, W. H.

Uchida, N.

N. Uchida, Y. Ohmachi, “Elastic and photoelastic properties of TeO2 single crystal,” J. Appl. Phys. 40(12), 4692–4695 (1969).
[CrossRef]

Vernaleken, A.

Wang, J.

Yao, J.

Yao, X. S.

X. S. Yao, L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[CrossRef]

X. S. Yao, L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[CrossRef]

Ye, S.

Yu, N.

D. Strekalov, A. B. Matsko, N. Yu, A. A. Savchenkov, L. Maleki, “Application of vertical cavity surface emitting lasers in self-oscillating atomic clocks,” J. Mod. Opt. 53(16-17), 2469–2484 (2006).
[CrossRef]

D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol. 21(12), 3052–3061 (2003).
[CrossRef]

Zhang, T.

Zhou, W.

Zhu, J.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

X. S. Yao, L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010).
[CrossRef]

J. Appl. Phys. (1)

N. Uchida, Y. Ohmachi, “Elastic and photoelastic properties of TeO2 single crystal,” J. Appl. Phys. 40(12), 4692–4695 (1969).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

D. Strekalov, A. B. Matsko, N. Yu, A. A. Savchenkov, L. Maleki, “Application of vertical cavity surface emitting lasers in self-oscillating atomic clocks,” J. Mod. Opt. 53(16-17), 2469–2484 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (3)

Other (3)

L. Maleki, “The opto-electronic oscillator (OEO): review and recent progress,” in Proceedings of IEEE Conference on European Frequency and Time Forum (Institute of Electrical and Electronics Engineers, Gothenburg, 2012), pp. 497–500.
[CrossRef]

Crystal Technology, Palo Alto, California, USA.

S. Tallur and S. A. Bhave, “Monolithic 2 GHz electrostatically actuated MEMS oscillator with opto-mechanical frequency multiplier,” in Proceedings of IEEE Conference on Solid-state Sensors, Actuators and Microsystems (Transducers and Eurosensors, Barcelona, 2013), pp. 1472–1475.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The simple diagram of the OEO: f 0 is the laser frequency and f 1 is the frequency of the sideband produced by the modulator. L 1 is the optical path length and L 2 is the electronic path length. x is the propagation length of a microwave through the modulator.

Fig. 2
Fig. 2

Experimental setup; ECDL: extended-cavity diode laser; TS: translation stage; AOM: acousto-optic modulator; HWP: half wave plate; PBS: polarization beam splitter; LP: linear polarizer; FPD: fast photo detector; BT: bias-Tee; AMP: amplifier; DC: directional coupler; SA: spectrum analyzer; PD: photo detector; FC: frequency counter.

Fig. 3
Fig. 3

(a) Microwave spectrum of the AOM-based OEO in multimode operation. (b) Allan deviation of the AOM-based OEO.

Fig. 4
Fig. 4

(a) Frequency measurement of the FSR as a function of the relative position of the AOM. (b) Microwave spectrum of the AOM-based OEO after increasing the relative position of the AOM in the direction of acoustic propagation. The resolution bandwidth is 10 kHz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k 1 L 1 + k 2 L 2 + k x x=2πq,
f q =q c c v x+ n o L 1 + n e L 2 ,
FSR= c c v x+ n o L 1 + n e L 2 .
FSR'= c c v (x+Δx)+ n o L 1 + n e L 2 .
v=Δx FSRFSR' FSR-FSR' .

Metrics