Abstract

Optical serial coherent analyzer of radio-frequency is a novel scheme that enables fast-scanning microwave signal measurements in a large bandwidth. The measurements are performed based on serial channelization realized by using a fast scanning laser source as the local oscillator to down-convert the to-be-measured radio-frequency (RF) signals. Optical coherent detection effectively removes interferences induced by RF’s self-beating and guarantees the accuracy of measurements. In the experimental demonstration, instantaneous multi-frequency measurements and vector information acquisition of RF signals can be achieved by this scheme within 2.8 μs over 14 GHz bandwidth.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zou, W. Pan, B. Luo, L. Yan, Y. Jiang, “Photonic approach to microwave frequency measurement with digital circular-code results,” Opt. Express 19(21), 20580–20585 (2011).
    [CrossRef] [PubMed]
  2. D. B. Hunter, L. G. Edvell, M. A. Englund, “Wideband microwave photonic channelised receiver,” in International Topical Meeting on Microwave Photonics (2005), pp. 249–252.
  3. V. Borja, M. Teresa, M. Javier, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
    [CrossRef]
  4. W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. Lembo, J. Brook, M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
    [CrossRef]
  5. J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, D. R. Wight, “16-channel (1- to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” Integrated Optic Devices II, SPIE 3278, 245–251 (1998).
    [CrossRef]
  6. C. S. Brès, S. Zlatanovic, A. O. J. Wiberg, S. Radic, “Reconfigurable parametric channelized receiver for instantaneous spectral analysis,” Opt. Express 19(4), 3531–3541 (2011).
    [CrossRef] [PubMed]
  7. X. Zou, J. Yao, “Optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20(23), 1989–1991 (2008).
    [CrossRef]
  8. X. Zou, W. Pan, B. Luo, L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
    [CrossRef] [PubMed]
  9. S. T. Winnall, A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47(7), 1385–1390 (1999).
    [CrossRef]
  10. S. Zheng, S. Ge, X. Zhang, H. Chi, X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
    [CrossRef]
  11. P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34(24), 3794–3796 (2009).
    [CrossRef] [PubMed]
  12. T. Kawanishi, T. Sakamoto, S. Shinada, M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
    [CrossRef]
  13. C. Lei, H. Chen, M. Chen, S. Yang, and S. Xie, “High-speed laser scanner with tunable scan rate, wavelength resolution and spectral coverage,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2013), paper JM3O.3.
    [CrossRef]
  14. I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V B: Systems and Networks (Elsevier, 2008), Chap. 3.
  15. R. Li, H. Chen, Y. Yu, M. Chen, S. Yang, S. Xie, “Multiple-frequency measurement based on serial photonic channelization using optical wavelength scanning,” Opt. Lett. 38(22), 4781–4784 (2013).
    [CrossRef] [PubMed]
  16. R. Li, C. Lei, Y. Liang, H. Chen, M. Chen, S. Yang, and S. Xie, “Serial photonic channelized RF frequency measurement based on optical coherent frequency scanning,” in OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, pp. 1–2(2013).

2013 (1)

2012 (1)

S. Zheng, S. Ge, X. Zhang, H. Chi, X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[CrossRef]

2011 (2)

2010 (2)

X. Zou, W. Pan, B. Luo, L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35(3), 438–440 (2010).
[CrossRef] [PubMed]

V. Borja, M. Teresa, M. Javier, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
[CrossRef]

2009 (1)

2008 (1)

X. Zou, J. Yao, “Optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20(23), 1989–1991 (2008).
[CrossRef]

2004 (1)

T. Kawanishi, T. Sakamoto, S. Shinada, M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[CrossRef]

2001 (1)

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. Lembo, J. Brook, M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[CrossRef]

1999 (1)

S. T. Winnall, A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47(7), 1385–1390 (1999).
[CrossRef]

1998 (1)

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, D. R. Wight, “16-channel (1- to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” Integrated Optic Devices II, SPIE 3278, 245–251 (1998).
[CrossRef]

Borja, V.

V. Borja, M. Teresa, M. Javier, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
[CrossRef]

Bourke, M. M.

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, D. R. Wight, “16-channel (1- to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” Integrated Optic Devices II, SPIE 3278, 245–251 (1998).
[CrossRef]

Boyne, C. M.

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, D. R. Wight, “16-channel (1- to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” Integrated Optic Devices II, SPIE 3278, 245–251 (1998).
[CrossRef]

Brès, C. S.

Brook, J.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. Lembo, J. Brook, M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[CrossRef]

Chen, H.

Chen, M.

Chi, H.

S. Zheng, S. Ge, X. Zhang, H. Chi, X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[CrossRef]

Davis, R. L.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. Lembo, J. Brook, M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[CrossRef]

Edvell, L. G.

D. B. Hunter, L. G. Edvell, M. A. Englund, “Wideband microwave photonic channelised receiver,” in International Topical Meeting on Microwave Photonics (2005), pp. 249–252.

Englund, M. A.

D. B. Hunter, L. G. Edvell, M. A. Englund, “Wideband microwave photonic channelised receiver,” in International Topical Meeting on Microwave Photonics (2005), pp. 249–252.

Ge, S.

S. Zheng, S. Ge, X. Zhang, H. Chi, X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[CrossRef]

Heaton, J. M.

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, D. R. Wight, “16-channel (1- to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” Integrated Optic Devices II, SPIE 3278, 245–251 (1998).
[CrossRef]

Hunter, D. B.

D. B. Hunter, L. G. Edvell, M. A. Englund, “Wideband microwave photonic channelised receiver,” in International Topical Meeting on Microwave Photonics (2005), pp. 249–252.

Izutsu, M.

T. Kawanishi, T. Sakamoto, S. Shinada, M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[CrossRef]

Javier, M.

V. Borja, M. Teresa, M. Javier, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
[CrossRef]

Jiang, Y.

Jin, X.

S. Zheng, S. Ge, X. Zhang, H. Chi, X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[CrossRef]

Jones, S. B.

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, D. R. Wight, “16-channel (1- to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” Integrated Optic Devices II, SPIE 3278, 245–251 (1998).
[CrossRef]

Jung, T. J.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. Lembo, J. Brook, M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[CrossRef]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, S. Shinada, M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[CrossRef]

Lembo, L.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. Lembo, J. Brook, M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[CrossRef]

Li, R.

Lindsay, A. C.

S. T. Winnall, A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47(7), 1385–1390 (1999).
[CrossRef]

Lodenkamper, R.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. Lembo, J. Brook, M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[CrossRef]

Luo, B.

Margulis, W.

Pan, W.

Radic, S.

Rugeland, P.

Sakamoto, T.

T. Kawanishi, T. Sakamoto, S. Shinada, M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[CrossRef]

Shinada, S.

T. Kawanishi, T. Sakamoto, S. Shinada, M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[CrossRef]

Smith, G. W.

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, D. R. Wight, “16-channel (1- to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” Integrated Optic Devices II, SPIE 3278, 245–251 (1998).
[CrossRef]

Sterner, C.

Tarasenko, O.

Tengstrand, G.

Teresa, M.

V. Borja, M. Teresa, M. Javier, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
[CrossRef]

Wang, W.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. Lembo, J. Brook, M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[CrossRef]

Watson, C. D.

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, D. R. Wight, “16-channel (1- to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” Integrated Optic Devices II, SPIE 3278, 245–251 (1998).
[CrossRef]

Wiberg, A. O. J.

Wight, D. R.

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, D. R. Wight, “16-channel (1- to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” Integrated Optic Devices II, SPIE 3278, 245–251 (1998).
[CrossRef]

Winnall, S. T.

S. T. Winnall, A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47(7), 1385–1390 (1999).
[CrossRef]

Wu, M.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. Lembo, J. Brook, M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[CrossRef]

Xie, S.

Yan, L.

Yang, S.

Yao, J.

X. Zou, J. Yao, “Optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20(23), 1989–1991 (2008).
[CrossRef]

Yu, Y.

Yu, Z.

Zhang, X.

S. Zheng, S. Ge, X. Zhang, H. Chi, X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[CrossRef]

Zheng, S.

S. Zheng, S. Ge, X. Zhang, H. Chi, X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[CrossRef]

Zlatanovic, S.

Zou, X.

IEEE Photon. Technol. Lett. (2)

X. Zou, J. Yao, “Optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20(23), 1989–1991 (2008).
[CrossRef]

S. Zheng, S. Ge, X. Zhang, H. Chi, X. Jin, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24(13), 1115–1117 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

S. T. Winnall, A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microw. Theory Tech. 47(7), 1385–1390 (1999).
[CrossRef]

V. Borja, M. Teresa, M. Javier, “Photonic technique for the measurement of frequency and power of multiple microwave signals,” IEEE Trans. Microw. Theory Tech. 58(11), 3103–3108 (2010).
[CrossRef]

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. Lembo, J. Brook, M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).
[CrossRef]

IEICE Electron. Express (1)

T. Kawanishi, T. Sakamoto, S. Shinada, M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[CrossRef]

Integrated Optic Devices II, SPIE (1)

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, D. R. Wight, “16-channel (1- to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” Integrated Optic Devices II, SPIE 3278, 245–251 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (4)

R. Li, C. Lei, Y. Liang, H. Chen, M. Chen, S. Yang, and S. Xie, “Serial photonic channelized RF frequency measurement based on optical coherent frequency scanning,” in OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, pp. 1–2(2013).

C. Lei, H. Chen, M. Chen, S. Yang, and S. Xie, “High-speed laser scanner with tunable scan rate, wavelength resolution and spectral coverage,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2013), paper JM3O.3.
[CrossRef]

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V B: Systems and Networks (Elsevier, 2008), Chap. 3.

D. B. Hunter, L. G. Edvell, M. A. Englund, “Wideband microwave photonic channelised receiver,” in International Topical Meeting on Microwave Photonics (2005), pp. 249–252.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the proposed OSCAR. CW: continuous wavelength; PC: polarization controller; MZM: Mach-Zehnder modulator; ADC: analog-to-digital convertor.

Fig. 2
Fig. 2

The structure of laser scanner based on optical switch and RFS. I/Q: in-phase/quadrature; BPF: band-pass filter; δt: hold time of switch opening; N·δt: one scanning period.

Fig. 3
Fig. 3

Time-frequency diagrams of (a) the laser scanner’s frequencies (colorful solid lines) and modulated RF (blue arrows); (b) received beat notes (blue lines); (c) identified RF frequencies in corresponding channels (crossed-over blue arrows are incorrect identifications). Diagonal lined areas represent time-frequency range of different channels.

Fig. 4
Fig. 4

(a) The carrier-suppressed single-sideband output of I/Q modulator. (b) The amplitude-frequency characteristic of the laser scanner. (c) The time-frequency feature of the laser scanner.

Fig. 5
Fig. 5

(a) Beat notes in some channels of multi-frequency signal. (b) The recovered multi-frequency RF signal.

Fig. 6
Fig. 6

Beat notes received in the (a) 5th, (b) 6th, (c) 7th channel of wideband signal from 9.97 to 10.01 GHz. (d) The recovered wide-band RF signal.

Fig. 7
Fig. 7

(a) To-be-measured BPSK signal; (b) The recovered phase information.

Fig. 8
Fig. 8

The spurious free dynamic range of the proposed system.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f 1 = f x (k1)δf f 2 =kδf f x
x(t)= m A m (t)exp(j(2π( f c + f xm )t+ φ m (t)) )
l(t)=exp(j2π f k t)
y(t)= | x(t)+jl(t) | 2 | jx(t)+l(t) | 2 =4× m A m (t)sin(2π( f xm (k1)×δf)t+ φ m (t))
y'(t)= | x(t)+jl(t) | 2 =2 m A m (t)sin(2π( f xm (k1)×δf)t+ φ m (t)) + 2 m,n A m (t) A n (t)cos[ 2π( f xm f xn )t+ φ m (t) φ n (t) ] RF's selfbeat notes
x m (t)= A m (t)sin(2π f xm t+ φ m (t))
φ m (t)=arccos(h(t)( x m (t)sin(2π f xm t)))

Metrics