Abstract

A novel silicon-on-insulator (SOI) polarization splitter-rotator is proposed based on mode-evolution tapers and a mode-sorting asymmetric Y-junction. The tapers are designed to adiabatically convert the input TM0 mode into the TE1 mode, which will evolve into the TE0 mode in the wide output arm while the input TE0 mode excites the TE0 mode in the narrow arm. The numerical simulation results show that the mode conversion efficiency increases with the lengths of the tapers and the Y-junction for the output waveguide widths in a large range. This proposed device has < 0.4 dB insertion loss with > 12 dB extinction ratio in an ultra-broad wavelength range from 1350 nm to 1750 nm. With such a broad operating bandwidth, this device offers potential applications for polarization diversity operating across every communication bands. Fabrication tolerance analysis is also performed in terms of the device width variation, the slab height variation and the variation of the upper-cladding refractive index.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [CrossRef]
  2. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “High density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999).
    [CrossRef]
  3. M. R. Watts, H. A. Haus, E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30(9), 967–969 (2005).
    [CrossRef] [PubMed]
  4. J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. Varghese, D. E. Leaird, M. Qi, and A. Weiner, “Efficient Silicon-on-Insulator Polarization Rotator based on Mode Evolution,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2012), JW4A.83.
    [CrossRef]
  5. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [CrossRef]
  6. L. Liu, Y. Ding, K. Yvind, J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
    [CrossRef] [PubMed]
  7. D. Dai, J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [CrossRef] [PubMed]
  8. Y. Ding, L. Liu, C. Peucheret, H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
    [CrossRef] [PubMed]
  9. Y. Fei, L. Zhang, T. Cao, Y. Cao, S. Chen, “Ultracompact polarization splitter-rotator based on an asymmetric directional coupler,” Appl. Opt. 51(34), 8257–8261 (2012).
    [CrossRef] [PubMed]
  10. J. Wang, B. Niu, Z. Sheng, A. Wu, X. Wang, S. Zou, M. Qi, F. Gan, “Design of a SiO₂ top-cladding and compact polarization splitter-rotator based on a rib directional coupler,” Opt. Express 22(4), 4137–4143 (2014).
    [CrossRef] [PubMed]
  11. H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E. Lim, G. Q. Lo, T. Baehr-Jones, M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
    [CrossRef] [PubMed]
  12. Y. Ding, H. Ou, C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38(8), 1227–1229 (2013).
    [CrossRef] [PubMed]
  13. W. D. Sacher, T. Barwicz, B. J. Taylor, J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
    [CrossRef] [PubMed]
  14. N. Riesen, J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
    [CrossRef] [PubMed]
  15. J. D. Love, N. Riesen, “Single-, Few-, and Multimode Y-Junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
    [CrossRef]
  16. W. Chen, P. Wang, J. Yang, “Mode multi/demultiplexer based on cascaded asymmetric Y-junctions,” Opt. Express 21(21), 25113–25119 (2013).
    [CrossRef] [PubMed]
  17. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [CrossRef] [PubMed]
  18. D. Dai, Y. Tang, J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
    [CrossRef] [PubMed]

2014

2013

2012

2011

2007

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

2005

1999

Baehr-Jones, T.

Baets, R.

Barwicz, T.

W. D. Sacher, T. Barwicz, B. J. Taylor, J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
[CrossRef] [PubMed]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Beckx, S.

Bienstman, P.

Bogaerts, W.

Bowers, J. E.

Cao, T.

Cao, Y.

Chen, S.

Chen, W.

Dadap, J. I.

Dai, D.

Ding, Y.

Driscoll, J. B.

Dumon, P.

Fan, S.

Fang, Q.

Fei, Y.

Gan, F.

Grote, R. R.

Guan, H.

Haus, H. A.

Hochberg, M.

Hvam, J. M.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

M. R. Watts, H. A. Haus, E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30(9), 967–969 (2005).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Lim, A. E.

Liu, L.

Lo, G. Q.

Love, J. D.

Lu, M.

Luyssaert, B.

Manolatou, C.

Niu, B.

Novack, A.

Osgood, R. M.

Ou, H.

Peucheret, C.

Poon, J. K.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Qi, M.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Riesen, N.

Sacher, W. D.

Sheng, Z.

Shi, R.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Souhan, B.

Streshinsky, M.

Taillaert, D.

Tang, Y.

Taylor, B. J.

Van Campenhout, J.

Van Thourhout, D.

Villeneuve, P. R.

Wang, J.

Wang, P.

Wang, X.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

M. R. Watts, H. A. Haus, E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30(9), 967–969 (2005).
[CrossRef] [PubMed]

Wiaux, V.

Wu, A.

Yang, J.

Yvind, K.

Zhang, L.

Zou, S.

Appl. Opt.

J. Lightwave Technol.

Nat. Photonics

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Opt. Express

L. Liu, Y. Ding, K. Yvind, J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
[CrossRef] [PubMed]

D. Dai, J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[CrossRef] [PubMed]

Y. Ding, L. Liu, C. Peucheret, H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
[CrossRef] [PubMed]

W. Chen, P. Wang, J. Yang, “Mode multi/demultiplexer based on cascaded asymmetric Y-junctions,” Opt. Express 21(21), 25113–25119 (2013).
[CrossRef] [PubMed]

J. Wang, B. Niu, Z. Sheng, A. Wu, X. Wang, S. Zou, M. Qi, F. Gan, “Design of a SiO₂ top-cladding and compact polarization splitter-rotator based on a rib directional coupler,” Opt. Express 22(4), 4137–4143 (2014).
[CrossRef] [PubMed]

H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E. Lim, G. Q. Lo, T. Baehr-Jones, M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
[CrossRef] [PubMed]

W. D. Sacher, T. Barwicz, B. J. Taylor, J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
[CrossRef] [PubMed]

D. Dai, Y. Tang, J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Other

J. C. Wirth, J. Wang, B. Niu, Y. Xuan, L. Fan, L. Varghese, D. E. Leaird, M. Qi, and A. Weiner, “Efficient Silicon-on-Insulator Polarization Rotator based on Mode Evolution,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2012), JW4A.83.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the proposed PSR consisting of mode-evolution tapers and a mode-sorting asymmetric Y-junction. (b) Effective indices of the first three modes in a rib waveguide as a function of the waveguide width. The rib waveguide has a 250 nm rib height and 50 nm slab height. The wavelength is 1550 nm in the simulation.

Fig. 2
Fig. 2

The mode conversion efficiency for the input TM0 mode as a function of Ltp2 for Ltp1 varying from 1 μm (black) to 10 μm (dark yellow), where Ltp3 is set to Ltp1(W3-W2)/(W1-W0). Insets: the mode propagation for TE0 and TM0 modes in the taper at the 1550 nm wavelength when Ltp1 = 10 μm, Ltp2 = 50 μm and Ltp3 = 5 μm.

Fig. 3
Fig. 3

The mode conversion efficiency in the asymmetric Y-junction for different input modes at the 1550 nm wavelength. (a-b) The correct mode-sorting occurs when Wn varies from 284 nm to 374 nm. (c) The undesirable mode coupling occurs when Wn = 274 nm. (d) The incorrect mode-sorting occurs when Wn = 264 nm.

Fig. 4
Fig. 4

The minimum Y-junction length required to achieve various levels of mode conversion efficiency from the TE1 mode to the TE0 mode at port 2 as a function of the narrow arm width Wn. The wavelength is 1550 nm in the simulation.

Fig. 5
Fig. 5

Mode propagation in the device when the input is (a) the TE0 mode and (b) the TM0 mode, respectively. The wavelength is 1550 nm.

Fig. 6
Fig. 6

The mode conversion efficiency as a function of the wavelength in the two output ports. The simulation is carried out by 3D-EME and 3D-FDTD methods. The grid size in the FDTD simulation is chosen as Δx = Δy = Δz = 15 nm. The conversion efficiency below −35 dB is not shown.

Fig. 7
Fig. 7

Fabrication tolerance analysis for (a) the width variation Δw of the device width, (b) the variation ΔHslab of the slab height, and (c) the variation of the upper-cladding refractive index. The inset of (a) shows a PSR layout affected by Δw > 0 (solid red) and Δw < 0 (dashed blue).

Metrics