Abstract

We carry out an approach to dynamic manipulation of a nondiffracting cosine-Gauss plasmonic beam (CGPB) illuminated with an incident phase modulation within nanostructures by a spatial light modulator (SLM). By changing the hologram addressed on the SLM, dynamic control on the lobe width and the propagating direction of the CGPB is experimentally verified. Finally, we demonstrate an application example of this dynamic CGPB in routing optical signals to multichannel subwavelength wave guides through numerical simulation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 1–2.
  2. L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University Press, 2006), Chap. 1–2.
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988), Chap. 1–2.
  4. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  5. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [CrossRef] [PubMed]
  6. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [CrossRef] [PubMed]
  7. G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, X. C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
    [CrossRef] [PubMed]
  8. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [CrossRef] [PubMed]
  9. C. Zhao, J. Wang, X. Wu, J. Zhang, “Focusing surface plasmons to multiple focal spots with a launching diffraction grating,” Appl. Phys. Lett. 94(11), 111105 (2009).
    [CrossRef]
  10. L. Li, T. Li, S. Wang, S. Zhu, X. Zhang, “Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
    [CrossRef] [PubMed]
  11. A. Salandrino, D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35(12), 2082–2084 (2010).
    [CrossRef] [PubMed]
  12. L. Li, T. Li, S. M. Wang, C. Zhang, S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
    [CrossRef] [PubMed]
  13. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar, “Generation and Near-Field Imaging of Airy Surface Plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
    [CrossRef] [PubMed]
  14. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36(16), 3191–3193 (2011).
    [CrossRef] [PubMed]
  15. L. Li, T. Li, S. M. Wang, S. N. Zhu, “Collimated Plasmon Beam: Nondiffracting versus Linearly Focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
    [CrossRef]
  16. J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
    [CrossRef] [PubMed]
  17. C. J. Zapata-Rodríguez, S. Vuković, M. R. Belić, D. Pastor, J. J. Miret, “Nondiffracting Bessel plasmons,” Opt. Express 19(20), 19572–19581 (2011).
    [CrossRef] [PubMed]
  18. C. J. Regan, L. G. de Peralta, A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
    [CrossRef]
  19. L. W. Casperson, A. A. Tovar, “Hermite-sinusoidal-Gaussian beams in complex optical systems,” J. Opt. Soc. Am. A 15(4), 954–961 (1998).
    [CrossRef]
  20. J. C. Gutiérrez-Vega, M. A. Bandres, “Helmholtz-Gauss waves,” J. Opt. Soc. Am. A 22(2), 289–298 (2005).
    [CrossRef] [PubMed]
  21. C. López-Mariscal, M. A. Bandres, J. C. Gutierrez-Vega, “Observation of the experimental propagation properties of Helmholtz-Gauss beams,” Opt. Eng. 45(6), 068001 (2006).
    [CrossRef]
  22. J. A. Davis, M. J. Mitry, M. A. Bandres, I. Ruiz, K. P. McAuley, D. M. Cottrell, “Generation of accelerating Airy and accelerating parabolic beams using phase-only patterns,” Appl. Opt. 48(17), 3170–3176 (2009).
    [CrossRef] [PubMed]
  23. P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, T. Šikola, “Control and Near-Field Detection of Surface Plasmon Interference Patterns,” Nano Lett. 13(6), 2558–2563 (2013).
    [CrossRef] [PubMed]
  24. T. V. Teperik, A. Archambault, F. Marquier, J. J. Greffet, “Huygens-Fresnel principle for surface plasmons,” Opt. Express 17(20), 17483–17490 (2009).
    [CrossRef] [PubMed]
  25. S. Wei, J. Lin, R. Wang, Q. Wang, G. Yuan, L. Du, Y. Wang, X. Luo, M. Hong, C. Min, X. Yuan, “Self-imaging generation of plasmonic void arrays,” Opt. Lett. 38(15), 2783–2785 (2013).
    [CrossRef] [PubMed]
  26. P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
    [CrossRef] [PubMed]

2013 (4)

L. Li, T. Li, S. M. Wang, S. N. Zhu, “Collimated Plasmon Beam: Nondiffracting versus Linearly Focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[CrossRef]

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, T. Šikola, “Control and Near-Field Detection of Surface Plasmon Interference Patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[CrossRef] [PubMed]

S. Wei, J. Lin, R. Wang, Q. Wang, G. Yuan, L. Du, Y. Wang, X. Luo, M. Hong, C. Min, X. Yuan, “Self-imaging generation of plasmonic void arrays,” Opt. Lett. 38(15), 2783–2785 (2013).
[CrossRef] [PubMed]

2012 (3)

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[CrossRef] [PubMed]

C. J. Regan, L. G. de Peralta, A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
[CrossRef]

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, X. C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[CrossRef] [PubMed]

2011 (5)

L. Li, T. Li, S. Wang, S. Zhu, X. Zhang, “Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[CrossRef] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar, “Generation and Near-Field Imaging of Airy Surface Plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36(16), 3191–3193 (2011).
[CrossRef] [PubMed]

C. J. Zapata-Rodríguez, S. Vuković, M. R. Belić, D. Pastor, J. J. Miret, “Nondiffracting Bessel plasmons,” Opt. Express 19(20), 19572–19581 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (3)

2006 (1)

C. López-Mariscal, M. A. Bandres, J. C. Gutierrez-Vega, “Observation of the experimental propagation properties of Helmholtz-Gauss beams,” Opt. Eng. 45(6), 068001 (2006).
[CrossRef]

2005 (5)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

J. C. Gutiérrez-Vega, M. A. Bandres, “Helmholtz-Gauss waves,” J. Opt. Soc. Am. A 22(2), 289–298 (2005).
[CrossRef] [PubMed]

1998 (1)

Archambault, A.

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Bandres, M. A.

Belic, M. R.

Bernussi, A. A.

C. J. Regan, L. G. de Peralta, A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
[CrossRef]

Blanchard, R.

Brínek, L.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, T. Šikola, “Control and Near-Field Detection of Surface Plasmon Interference Patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Brown, D. E.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Capasso, F.

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[CrossRef] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[CrossRef] [PubMed]

Casperson, L. W.

Chen, Z.

Christodoulides, D. N.

Cluzel, B.

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[CrossRef] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[CrossRef] [PubMed]

Cottrell, D. M.

Davis, J. A.

de Fornel, F.

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[CrossRef] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[CrossRef] [PubMed]

de Peralta, L. G.

C. J. Regan, L. G. de Peralta, A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
[CrossRef]

Dellinger, J.

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[CrossRef] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Du, L.

Dub, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, T. Šikola, “Control and Near-Field Detection of Surface Plasmon Interference Patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Dvorák, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, T. Šikola, “Control and Near-Field Detection of Surface Plasmon Interference Patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Genevet, P.

P. Genevet, J. Dellinger, R. Blanchard, A. She, M. Petit, B. Cluzel, M. A. Kats, F. de Fornel, F. Capasso, “Generation of two-dimensional plasmonic bottle beams,” Opt. Express 21(8), 10295–10300 (2013).
[CrossRef] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[CrossRef] [PubMed]

Greffet, J. J.

Gutierrez-Vega, J. C.

C. López-Mariscal, M. A. Bandres, J. C. Gutierrez-Vega, “Observation of the experimental propagation properties of Helmholtz-Gauss beams,” Opt. Eng. 45(6), 068001 (2006).
[CrossRef]

Gutiérrez-Vega, J. C.

Hiller, J. M.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Hong, M.

Hua, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Janunts, N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar, “Generation and Near-Field Imaging of Airy Surface Plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Kalousek, R.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, T. Šikola, “Control and Near-Field Detection of Surface Plasmon Interference Patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Kats, M. A.

Kimball, C. W.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar, “Generation and Near-Field Imaging of Airy Surface Plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Klein, A. E.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar, “Generation and Near-Field Imaging of Airy Surface Plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Li, L.

L. Li, T. Li, S. M. Wang, S. N. Zhu, “Collimated Plasmon Beam: Nondiffracting versus Linearly Focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[CrossRef]

L. Li, T. Li, S. Wang, S. Zhu, X. Zhang, “Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[CrossRef] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

Li, T.

L. Li, T. Li, S. M. Wang, S. N. Zhu, “Collimated Plasmon Beam: Nondiffracting versus Linearly Focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[CrossRef]

L. Li, T. Li, S. M. Wang, C. Zhang, S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

L. Li, T. Li, S. Wang, S. Zhu, X. Zhang, “Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[CrossRef] [PubMed]

Lin, J.

S. Wei, J. Lin, R. Wang, Q. Wang, G. Yuan, L. Du, Y. Wang, X. Luo, M. Hong, C. Min, X. Yuan, “Self-imaging generation of plasmonic void arrays,” Opt. Lett. 38(15), 2783–2785 (2013).
[CrossRef] [PubMed]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[CrossRef] [PubMed]

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, X. C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[CrossRef] [PubMed]

Liu, Y.

Liu, Z. W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

López-Mariscal, C.

C. López-Mariscal, M. A. Bandres, J. C. Gutierrez-Vega, “Observation of the experimental propagation properties of Helmholtz-Gauss beams,” Opt. Eng. 45(6), 068001 (2006).
[CrossRef]

Lu, C.

Luo, X.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Marquier, F.

McAuley, K. P.

Min, C.

Minovich, A.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar, “Generation and Near-Field Imaging of Airy Surface Plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Miret, J. J.

Mitry, M. J.

Neshev, D. N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar, “Generation and Near-Field Imaging of Airy Surface Plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Neuman, T.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, T. Šikola, “Control and Near-Field Detection of Surface Plasmon Interference Patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Pastor, D.

Pearson, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Pertsch, T.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar, “Generation and Near-Field Imaging of Airy Surface Plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Petit, M.

Pikus, Y.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Regan, C. J.

C. J. Regan, L. G. de Peralta, A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
[CrossRef]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Ruiz, I.

Salandrino, A.

Šamoril, T.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, T. Šikola, “Control and Near-Field Detection of Surface Plasmon Interference Patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

She, A.

Šikola, T.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, T. Šikola, “Control and Near-Field Detection of Surface Plasmon Interference Patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Srituravanich, W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Sun, C.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Tan, P. S.

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, X. C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[CrossRef] [PubMed]

Teperik, T. V.

Tovar, A. A.

Varga, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, T. Šikola, “Control and Near-Field Detection of Surface Plasmon Interference Patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Vlasko-Vlasov, V. K.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Vukovic, S.

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Wang, J.

C. Zhao, J. Wang, X. Wu, J. Zhang, “Focusing surface plasmons to multiple focal spots with a launching diffraction grating,” Appl. Phys. Lett. 94(11), 111105 (2009).
[CrossRef]

Wang, Q.

S. Wei, J. Lin, R. Wang, Q. Wang, G. Yuan, L. Du, Y. Wang, X. Luo, M. Hong, C. Min, X. Yuan, “Self-imaging generation of plasmonic void arrays,” Opt. Lett. 38(15), 2783–2785 (2013).
[CrossRef] [PubMed]

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, X. C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[CrossRef] [PubMed]

Wang, R.

Wang, S.

L. Li, T. Li, S. Wang, S. Zhu, X. Zhang, “Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[CrossRef] [PubMed]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36(16), 3191–3193 (2011).
[CrossRef] [PubMed]

Wang, S. M.

L. Li, T. Li, S. M. Wang, S. N. Zhu, “Collimated Plasmon Beam: Nondiffracting versus Linearly Focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[CrossRef]

L. Li, T. Li, S. M. Wang, C. Zhang, S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

Wang, Y.

Wei, S.

Welp, U.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Wu, X.

C. Zhao, J. Wang, X. Wu, J. Zhang, “Focusing surface plasmons to multiple focal spots with a launching diffraction grating,” Appl. Phys. Lett. 94(11), 111105 (2009).
[CrossRef]

Yin, L. L.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Yin, X.

Yuan, G.

Yuan, G. H.

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, X. C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[CrossRef] [PubMed]

Yuan, X.

Yuan, X. C.

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, X. C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[CrossRef] [PubMed]

Zapata-Rodríguez, C. J.

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Zhang, C.

L. Li, T. Li, S. M. Wang, C. Zhang, S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

Zhang, J.

C. Zhao, J. Wang, X. Wu, J. Zhang, “Focusing surface plasmons to multiple focal spots with a launching diffraction grating,” Appl. Phys. Lett. 94(11), 111105 (2009).
[CrossRef]

Zhang, P.

Zhang, X.

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36(16), 3191–3193 (2011).
[CrossRef] [PubMed]

L. Li, T. Li, S. Wang, S. Zhu, X. Zhang, “Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[CrossRef] [PubMed]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Zhao, C.

C. Zhao, J. Wang, X. Wu, J. Zhang, “Focusing surface plasmons to multiple focal spots with a launching diffraction grating,” Appl. Phys. Lett. 94(11), 111105 (2009).
[CrossRef]

Zhu, S.

L. Li, T. Li, S. Wang, S. Zhu, X. Zhang, “Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[CrossRef] [PubMed]

Zhu, S. N.

L. Li, T. Li, S. M. Wang, S. N. Zhu, “Collimated Plasmon Beam: Nondiffracting versus Linearly Focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[CrossRef]

L. Li, T. Li, S. M. Wang, C. Zhang, S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Zhao, J. Wang, X. Wu, J. Zhang, “Focusing surface plasmons to multiple focal spots with a launching diffraction grating,” Appl. Phys. Lett. 94(11), 111105 (2009).
[CrossRef]

J. Appl. Phys. (1)

C. J. Regan, L. G. de Peralta, A. A. Bernussi, “Two-dimensional Bessel-like surface plasmon-polariton beams,” J. Appl. Phys. 112(10), 103107 (2012).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nano Lett. (4)

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, T. Šikola, “Control and Near-Field Detection of Surface Plasmon Interference Patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

L. Li, T. Li, S. Wang, S. Zhu, X. Zhang, “Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[CrossRef] [PubMed]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Nanotechnology (1)

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, X. C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[CrossRef] [PubMed]

Opt. Eng. (1)

C. López-Mariscal, M. A. Bandres, J. C. Gutierrez-Vega, “Observation of the experimental propagation properties of Helmholtz-Gauss beams,” Opt. Eng. 45(6), 068001 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. Lett. (5)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar, “Generation and Near-Field Imaging of Airy Surface Plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

L. Li, T. Li, S. M. Wang, S. N. Zhu, “Collimated Plasmon Beam: Nondiffracting versus Linearly Focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[CrossRef]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, F. Capasso, “Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave,” Phys. Rev. Lett. 109(9), 093904 (2012).
[CrossRef] [PubMed]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 1–2.

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University Press, 2006), Chap. 1–2.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988), Chap. 1–2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. SLM, spatial light modulator (HOLOEYE; active area: 15.36×8.64 mm; number of pixels: 1920×1080; pixel pitch: 8.0 μ m ); PMT, photomultiplier tube; Inset (a) scanning electron micrographs of the launching gratings (width of each slit: 240 n m ; total length: 15 μ m ; To achieve maximum excitation efficiency, the period of grating is chosen as the wavelength of SPP (613 n m ) excited by a 632.8 n m laser). (b) A typical hologram for generating CGPB.

Fig. 2
Fig. 2

CGPB generated by wavefront modulation, where α = 0.03 . The near-field intensity distributions obtained from (a) theoretical calculations (z-component), (b) FDTD simulations (in-plane component) and (c) experimental results (in-plane component) of electric field intensity measured by a NSOM. (d) Schematically show the modulation process. After modulated by the SLM, a plane wave separates into two independent ones and focused into two points on the back focal plane ( P 2 ) of the objective lens ( L 2 ). Then the two points recover to two plane waves after passing through the objective lens and interfere on the grating plane ( P 3 ). (e), (f) Normalized transverse intensity distributions at locations A and B [red curve, theoretical calculations; green curve, FDTD simulations; blue curve, experimental results].

Fig. 3
Fig. 3

Dynamic modulation of the CGPB’s lobe width. From Fig. 3(a) to Fig. 3(h), the parameter α increases from 0.02 to 0.09 degree in the step of 0.01 degree and the corresponding lobe width decreases from 3 μ m to 0.682 μ m . Figure 3(i) gives the FWHM of the CGPB’s lobes as a function of parameterα. All other parameters are as in Fig. 2.

Fig. 4
Fig. 4

Dynamic modulation of the CGPB’s propagating direction. (a), (c) are analytical calculations with parameter β = 0.06 and β = 0.06 , the CGPB propagate in the direction of 9.16 and 9.16 with respect to the xaxis. (b) and (d) are the corresponding experimental results imaged by NSOM. All other parameters are as in Fig. 2.

Fig. 5
Fig. 5

The dynamic coupling between CGPB and multichannel waveguides. In Fig. 5(a), with parameter β = 0.15 ( β 0 = 21.96 ) , the optical energy was coupled into the above three waveguides and (b) β = 0.15 ( β 0 = 21.96 ) into the bottom three ones. The detailed arrangement was shown in the inset of Fig. 5(a). Light green color part is the waveguides and yellow part is the Au surface. The thickness and width of the stripe waveguide are 250 n m and 150 n m respectively. All other parameters are as in Fig. 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E z SP ( x,y )= i λ SP E z SP ( x 0 =0, y 0 ) e i π 4 cosθ e i k SP ρ ρ d y 0

Metrics