Abstract

Partially coherent light provides promising advantages for imaging applications. In contrast to its completely coherent counterpart, it prevents image degradation due to speckle noise and decreases cross-talk among the imaged objects. These facts make attractive the partially coherent illumination for accurate quantitative imaging in microscopy. In this work, we present a non-interferometric technique and system for quantitative phase imaging with simultaneous determination of the spatial coherence properties of the sample illumination. Its performance is experimentally demonstrated in several examples underlining the benefits of partial coherence for practical imagining applications. The programmable optical setup comprises an electrically tunable lens and sCMOS camera that allows for high-speed measurement in the millisecond range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
    [CrossRef] [PubMed]
  2. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
    [CrossRef] [PubMed]
  3. M. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, Springer Series in Optical Sciences (Springer, 2011).
    [CrossRef]
  4. P. Ferraro, A. Wax, Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Series in Surface Sciences (Springer, 2011).
  5. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon 7, 113–117 (2013).
    [CrossRef]
  6. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  7. L. Camacho, V. Micó, Z. Zalevsky, J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755–6766 (2010).
    [CrossRef] [PubMed]
  8. J. A. Rodrigo, T. Alieva, G. Cristóbal, M. L. Calvo, “Wavefield imaging via iterative retrieval based on phase modulation diversity,” Opt. Express 19, 18621–18635 (2011).
    [CrossRef] [PubMed]
  9. T. E. Gureyev, K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).
    [CrossRef]
  10. C. Zuo, Q. Chen, W. Qu, A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21, 24060–24075 (2013).
    [CrossRef] [PubMed]
  11. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum,” PNAS 105, 13730–13735 (2008).
    [CrossRef] [PubMed]
  12. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
    [CrossRef]
  13. B. Redding, M. A. Choma, H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat Photonics 6, 355–359 (2012).
    [CrossRef] [PubMed]
  14. M. Nixon, B. Redding, A. A. Friesem, H. Cao, N. Davidson, “Efficient method for controlling the spatial coherence of a laser,” Opt. Lett. 38, 3858–3861 (2013).
    [CrossRef] [PubMed]
  15. B. Kemper, S. Sturwald, C. Remmersmann, P. Langehanenberg, G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
    [CrossRef]
  16. P. Langehanenberg, G. v. Bally, B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57, 709–717 (2010).
    [CrossRef]
  17. S. O. Isikman, W. Bishara, A. Ozcan, “Partially coherent lensfree tomographic microscopy [Invited],” Appl. Opt. 50, H253–H264 (2011).
    [CrossRef] [PubMed]
  18. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat Photonics 8, 256–263 (2014).
    [CrossRef]
  19. J. W. Goodman, Statistical Optics (Wiley&Sons, 2000).
  20. I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Phys-Berlin 524, 787–804 (2012).
    [CrossRef]
  21. A. C. Schell, “The multiple plate antenna,” Ph.D. thesis, Massachusetts Institute of Technology (1961).
  22. C. Minetti, N. Callens, G. Coupier, T. Podgorski, F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47, 5305–5314 (2008).
    [CrossRef] [PubMed]
  23. T. J. McIntyre, C. Maurer, S. Fassl, S. Khan, S. Bernet, M. Ritsch-Marte, “Quantitative SLM-based differential interference contrast imaging,” Opt. Express 18, 14063–14078 (2010).
    [CrossRef] [PubMed]
  24. J. A. Rodrigo, T. Alieva, “Recovery of Schell-model partially coherent beams,” Opt. Lett. 39, 1030–1033 (2014).
    [CrossRef] [PubMed]
  25. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21, 21010–21026 (2013).
    [CrossRef] [PubMed]
  26. J. Clark, X. Huang, R. Harder, I. Robinson, “High-resolution three-dimensional partially coherent diffraction imaging,” Nat Commun 3, 993 (2012).
    [CrossRef] [PubMed]
  27. D. Mendlovic, Z. Zalevsky, N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Optic 44, 407–414 (1997).
    [CrossRef]
  28. M. A. Herráez, D. R. Burton, M. J. Lalor, M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41, 7437–7444 (2002).
    [CrossRef] [PubMed]
  29. A. V. Martin, F. R. Che, W. K. Hsieh, J. J. Kai, S. D. Findlay, L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy 106, 914–924 (2006).
    [CrossRef] [PubMed]
  30. J. W. Goodman, Introduction to Fourier Optics, (Roberts&Company, 2005).

2014

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat Photonics 8, 256–263 (2014).
[CrossRef]

J. A. Rodrigo, T. Alieva, “Recovery of Schell-model partially coherent beams,” Opt. Lett. 39, 1030–1033 (2014).
[CrossRef] [PubMed]

2013

2012

B. Redding, M. A. Choma, H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat Photonics 6, 355–359 (2012).
[CrossRef] [PubMed]

I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Phys-Berlin 524, 787–804 (2012).
[CrossRef]

J. Clark, X. Huang, R. Harder, I. Robinson, “High-resolution three-dimensional partially coherent diffraction imaging,” Nat Commun 3, 993 (2012).
[CrossRef] [PubMed]

2011

2010

2009

2008

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum,” PNAS 105, 13730–13735 (2008).
[CrossRef] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[CrossRef]

B. Kemper, S. Sturwald, C. Remmersmann, P. Langehanenberg, G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

C. Minetti, N. Callens, G. Coupier, T. Podgorski, F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47, 5305–5314 (2008).
[CrossRef] [PubMed]

2006

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[CrossRef] [PubMed]

A. V. Martin, F. R. Che, W. K. Hsieh, J. J. Kai, S. D. Findlay, L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy 106, 914–924 (2006).
[CrossRef] [PubMed]

2002

1997

D. Mendlovic, Z. Zalevsky, N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Optic 44, 407–414 (1997).
[CrossRef]

T. E. Gureyev, K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).
[CrossRef]

1972

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Abdulhalim, I.

I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Phys-Berlin 524, 787–804 (2012).
[CrossRef]

Alieva, T.

Allen, L. J.

A. V. Martin, F. R. Che, W. K. Hsieh, J. J. Kai, S. D. Findlay, L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy 106, 914–924 (2006).
[CrossRef] [PubMed]

Asundi, A.

Babacan, S. D.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat Photonics 8, 256–263 (2014).
[CrossRef]

Badizadegan, K.

Bally, G. v.

P. Langehanenberg, G. v. Bally, B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57, 709–717 (2010).
[CrossRef]

Barbul, A.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[CrossRef]

Bernet, S.

Bishara, W.

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon 7, 113–117 (2013).
[CrossRef]

Burton, D. R.

Callens, N.

Calvo, M. L.

Camacho, L.

Cao, H.

Carney, P. S.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat Photonics 8, 256–263 (2014).
[CrossRef]

Charrière, F.

Che, F. R.

A. V. Martin, F. R. Che, W. K. Hsieh, J. J. Kai, S. D. Findlay, L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy 106, 914–924 (2006).
[CrossRef] [PubMed]

Chen, Q.

Choi, W.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum,” PNAS 105, 13730–13735 (2008).
[CrossRef] [PubMed]

Choma, M. A.

B. Redding, M. A. Choma, H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat Photonics 6, 355–359 (2012).
[CrossRef] [PubMed]

Clark, J.

J. Clark, X. Huang, R. Harder, I. Robinson, “High-resolution three-dimensional partially coherent diffraction imaging,” Nat Commun 3, 993 (2012).
[CrossRef] [PubMed]

Colomb, T.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon 7, 113–117 (2013).
[CrossRef]

Coupier, G.

Cristóbal, G.

Cuche, E.

Dasari, R. R.

Davidson, N.

Depeursinge, C.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon 7, 113–117 (2013).
[CrossRef]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[CrossRef]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[CrossRef] [PubMed]

Diez-Silva, M.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum,” PNAS 105, 13730–13735 (2008).
[CrossRef] [PubMed]

Dubois, F.

Emery, Y.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[CrossRef]

Fahrbach, F. O.

Fang-Yen, C.

Fassl, S.

Feld, M. S.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum,” PNAS 105, 13730–13735 (2008).
[CrossRef] [PubMed]

Ferraro, P.

P. Ferraro, A. Wax, Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Series in Surface Sciences (Springer, 2011).

Findlay, S. D.

A. V. Martin, F. R. Che, W. K. Hsieh, J. J. Kai, S. D. Findlay, L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy 106, 914–924 (2006).
[CrossRef] [PubMed]

Friesem, A. A.

García, J.

Gdeisat, M. A.

Gerchberg, R. W.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Goddard, L. L.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat Photonics 8, 256–263 (2014).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley&Sons, 2000).

J. W. Goodman, Introduction to Fourier Optics, (Roberts&Company, 2005).

Gureyev, T. E.

T. E. Gureyev, K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).
[CrossRef]

Harder, R.

J. Clark, X. Huang, R. Harder, I. Robinson, “High-resolution three-dimensional partially coherent diffraction imaging,” Nat Commun 3, 993 (2012).
[CrossRef] [PubMed]

Helmchen, F.

Herráez, M. A.

Hsieh, W. K.

A. V. Martin, F. R. Che, W. K. Hsieh, J. J. Kai, S. D. Findlay, L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy 106, 914–924 (2006).
[CrossRef] [PubMed]

Huang, X.

J. Clark, X. Huang, R. Harder, I. Robinson, “High-resolution three-dimensional partially coherent diffraction imaging,” Nat Commun 3, 993 (2012).
[CrossRef] [PubMed]

Huisken, J.

Isikman, S. O.

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon 7, 113–117 (2013).
[CrossRef]

Kai, J. J.

A. V. Martin, F. R. Che, W. K. Hsieh, J. J. Kai, S. D. Findlay, L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy 106, 914–924 (2006).
[CrossRef] [PubMed]

Kemper, B.

P. Langehanenberg, G. v. Bally, B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57, 709–717 (2010).
[CrossRef]

B. Kemper, S. Sturwald, C. Remmersmann, P. Langehanenberg, G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Khan, S.

Kim, M.

M. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, Springer Series in Optical Sciences (Springer, 2011).
[CrossRef]

Kim, T.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat Photonics 8, 256–263 (2014).
[CrossRef]

Konforti, N.

D. Mendlovic, Z. Zalevsky, N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Optic 44, 407–414 (1997).
[CrossRef]

Korenstein, R.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[CrossRef]

Kuehn, J.

Lalor, M. J.

Langehanenberg, P.

P. Langehanenberg, G. v. Bally, B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57, 709–717 (2010).
[CrossRef]

B. Kemper, S. Sturwald, C. Remmersmann, P. Langehanenberg, G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Lykotrafitis, G.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum,” PNAS 105, 13730–13735 (2008).
[CrossRef] [PubMed]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon 7, 113–117 (2013).
[CrossRef]

Magistretti, P. J.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[CrossRef]

Marian, A.

Marquet, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon 7, 113–117 (2013).
[CrossRef]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[CrossRef]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[CrossRef] [PubMed]

Martin, A. V.

A. V. Martin, F. R. Che, W. K. Hsieh, J. J. Kai, S. D. Findlay, L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy 106, 914–924 (2006).
[CrossRef] [PubMed]

Maurer, C.

McIntyre, T. J.

Mendlovic, D.

D. Mendlovic, Z. Zalevsky, N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Optic 44, 407–414 (1997).
[CrossRef]

Micó, V.

Minetti, C.

Mir, M.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat Photonics 8, 256–263 (2014).
[CrossRef]

Montfort, F.

Nixon, M.

Nugent, K. A.

T. E. Gureyev, K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).
[CrossRef]

Ozcan, A.

Park, Y.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum,” PNAS 105, 13730–13735 (2008).
[CrossRef] [PubMed]

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon 7, 113–117 (2013).
[CrossRef]

Podgorski, T.

Popescu, G.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat Photonics 8, 256–263 (2014).
[CrossRef]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum,” PNAS 105, 13730–13735 (2008).
[CrossRef] [PubMed]

Qu, W.

Rappaz, B.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[CrossRef]

Redding, B.

Remmersmann, C.

B. Kemper, S. Sturwald, C. Remmersmann, P. Langehanenberg, G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Ritsch-Marte, M.

Robinson, I.

J. Clark, X. Huang, R. Harder, I. Robinson, “High-resolution three-dimensional partially coherent diffraction imaging,” Nat Commun 3, 993 (2012).
[CrossRef] [PubMed]

Rodrigo, J. A.

Saxton, W. O.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Schell, A. C.

A. C. Schell, “The multiple plate antenna,” Ph.D. thesis, Massachusetts Institute of Technology (1961).

Schmid, B.

Sturwald, S.

B. Kemper, S. Sturwald, C. Remmersmann, P. Langehanenberg, G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Sung, Y.

Suresh, S.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum,” PNAS 105, 13730–13735 (2008).
[CrossRef] [PubMed]

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon 7, 113–117 (2013).
[CrossRef]

Voigt, F. F.

von Bally, G.

B. Kemper, S. Sturwald, C. Remmersmann, P. Langehanenberg, G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Wax, A.

P. Ferraro, A. Wax, Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Series in Surface Sciences (Springer, 2011).

Zalevsky, Z.

L. Camacho, V. Micó, Z. Zalevsky, J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755–6766 (2010).
[CrossRef] [PubMed]

D. Mendlovic, Z. Zalevsky, N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Optic 44, 407–414 (1997).
[CrossRef]

P. Ferraro, A. Wax, Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Series in Surface Sciences (Springer, 2011).

Zhou, R.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat Photonics 8, 256–263 (2014).
[CrossRef]

Zuo, C.

Ann. Phys-Berlin

I. Abdulhalim, “Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography,” Ann. Phys-Berlin 524, 787–804 (2012).
[CrossRef]

Appl. Opt.

Cytometry Part A

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[CrossRef]

J. Mod. Opt.

P. Langehanenberg, G. v. Bally, B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57, 709–717 (2010).
[CrossRef]

J. Mod. Optic

D. Mendlovic, Z. Zalevsky, N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Optic 44, 407–414 (1997).
[CrossRef]

Nat Commun

J. Clark, X. Huang, R. Harder, I. Robinson, “High-resolution three-dimensional partially coherent diffraction imaging,” Nat Commun 3, 993 (2012).
[CrossRef] [PubMed]

Nat Photon

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon 7, 113–117 (2013).
[CrossRef]

Nat Photonics

B. Redding, M. A. Choma, H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat Photonics 6, 355–359 (2012).
[CrossRef] [PubMed]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat Photonics 8, 256–263 (2014).
[CrossRef]

Opt. Commun.

T. E. Gureyev, K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

B. Kemper, S. Sturwald, C. Remmersmann, P. Langehanenberg, G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Lasers Eng. 46, 499–507 (2008).
[CrossRef]

Opt. Lett.

Optik

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

PNAS

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum,” PNAS 105, 13730–13735 (2008).
[CrossRef] [PubMed]

Ultramicroscopy

A. V. Martin, F. R. Che, W. K. Hsieh, J. J. Kai, S. D. Findlay, L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy 106, 914–924 (2006).
[CrossRef] [PubMed]

Other

J. W. Goodman, Introduction to Fourier Optics, (Roberts&Company, 2005).

M. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, Springer Series in Optical Sciences (Springer, 2011).
[CrossRef]

P. Ferraro, A. Wax, Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, Springer Series in Surface Sciences (Springer, 2011).

J. W. Goodman, Statistical Optics (Wiley&Sons, 2000).

A. C. Schell, “The multiple plate antenna,” Ph.D. thesis, Massachusetts Institute of Technology (1961).

Supplementary Material (1)

» Media 1: MOV (7416 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Setup for the measurement of constraint images IPC (ro). This setup is attached to the microscope as sketched in (b). Collector lens projects the illumination beam (laser or LED) into the condenser (10× MO). The sample is imaged by the objective lens (100× MO) and tube lens, which is identical to the relay lens (RL) with focal length of 15 cm. Inset displays the measurement device: ETL (Optotune, EL-10-30-C) and high-speed sCMOS camera (Hamamatsu, Orca Flash 4.0). (c) Scheme of the iterative MI recovery algorithm.

Fig. 2
Fig. 2

Measured images of a polystyrene bead and its thickness reconstruction using coherent laser (a) and partially coherent LED (b) illumination sources. (c) Thickness profile of a spherical bead (black line plot) and the reconstructed ones for laser and LED (red and blue scatter plots). The phase retrieval algorithm fails to reconstruct the thickness when the partial coherence of the LED is ignored, see cyan colored dotted-line plot in (c).

Fig. 3
Fig. 3

Left panel: Sketch of the sample (scattering media on the top coverslip) illuminated by a monochromatic laser beam and quasi-monochromatic partially coherent LED beam. The measured power spectrum of LED (λ0 = 648 ± 1 nm, Δλ = 12 ± 2 nm) is displayed. Right panel: (a)–(c) Images of the sample at the chamber’s top and bottom coverslips, for each illumination case. Images acquired by the high-resolution sCMOS camera are displayed at the third row as a zoom inset.

Fig. 4
Fig. 4

(a)–(d) Intensity and phase of the reconstructed object wavefield at different focusing planes. RBCs, WBCs and platelets (P) are distinguished in the phase images (d) and (e). Coherent laser illumination yields significant cross-talk degrading the phase image (f).

Fig. 5
Fig. 5

(a) Measured constraint images and the reconstructed ones with RMS error about 12 %. The measured stack of images is provided as video file in Media 1 to illustrate the high-speed acquisition. (b) Amplitude of the reconstructed DSC and its 1D profile.

Fig. 6
Fig. 6

(a) Calibration functions for the back focal length of the ETL and (b) for its radius of curvature. (c) Correction function for the current (red line) and experimental data (red scatter plot).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I P C ( m ) ( r o ) = I C ( m ) ( r o ) γ ˜ m ( r o ) = I C ( m ) ( r o ) γ ˜ m ( r o r o ) d r o ,
W m , n ( r o ) = exp ( i 2 π d / λ 0 ) i λ 0 d g n ( r i ) L m ( r i ) exp ( i π ( r o r i ) 2 λ 0 d ) d r i ,
W m , n ( r o ) = W m , n ( r o ) I P C ( m ) ( r o ) / P C ( m , n ) ( r o ) ,
γ ˜ m ( k + 1 ) ( r o ) = γ ˜ m ( k ) ( r o ) × ( P ( m , n ) ( r o ) I P C ( m ) ( r o ) P ( m , n ) ( r o ) γ ˜ m ( k ) ( r o ) ) ,
( m ) [ f ( r i ) ] ( r o ) = f ( r i ) K ( m ) ( r i , r o ) d r i ,
K ( m ) ( r i , r o ) = σ β 1 exp [ i π σ ( 2 r i r o β 1 + r i 2 β 2 + r o 2 β 3 ) ] ,
I P C ( m ) ( r o ) = Γ ( r 1 , r 2 ) K ( m ) ( r 1 , r o ) K * ( m ) ( r 2 , r o ) d r 1 d r 2 ,
I P C ( m ) ( r o ) = ( σ β 1 ) 2 f ( R + Δ r 2 ) f * ( R Δ r 2 ) exp [ i 2 π σ β 1 ( X x + Y y ) ] d R × γ ( Δ r ) exp [ i 2 π σ β 1 ( x o x + y o y ) ] d Δ r .
I P C ( m ) ( r o ) = I C ( m ) ( r o ) γ ˜ m ( r o ) = I C ( m ) ( r o ) γ ˜ m ( r o r o ) d r o ,
T ( r ) = exp ( i 2 π ( ρ ( n lens 1 ) + ρ 0 ) / λ ) ,
ρ = ( ρ 0 2 + a 2 2 ρ 0 ) 2 r 2 + ρ 0 2 a 2 2 ρ 0 ,
L ( r ) = exp ( i π r 2 / λ f ) exp ( i 2 π ρ 0 n lens / λ ) ,
f ( ρ 0 ) = ρ 0 2 + a 2 2 ρ 0 ( n lens 1 ) .

Metrics