Abstract

We present the whole design-production chain of an ultra-steep hot mirror produced using the indirect monochromatic monitoring technique. The hot mirror without thin layers is designed utilizing the stochastic optimization procedure that takes in account upper and lower constraints for layer optical thickness. We produced the hot mirror with the ion-assisted electron beam deposition technique using indirect monochromatic monitoring strategy, performed reverse engineering of the deposited coatings, and illustrated that the random variation of the tooling factors in low-index layers is the main factor causing production errors. We modified the monitoring strategy with low-index layers monitored by quartz crystal monitor, and demonstrated the excellent correspondence to the theoretical spectral performance.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2010), IV, pp. 7.15–7.53.
  2. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010).
  3. A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35(25), 4966–4977 (1996).
    [CrossRef] [PubMed]
  4. A. V. Tikhonravov, M. K. Trubetskov, G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (2007).
    [CrossRef] [PubMed]
  5. A. V. Tikhonravov, M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
    [CrossRef] [PubMed]
  6. A. V. Tikhonravov, M. K. Trubetskov, I. Kozlov, S. Alekseev, P. Konotopov and V. Zhupanov, “Correlated choice of design and monitoring strategy,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2013), paper WB3.
  7. S. Wilbrandt, O. Stenzel, N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18(19), 19732–19742 (2010).
    [CrossRef] [PubMed]
  8. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50(35), 6468–6475 (2011).
    [CrossRef] [PubMed]
  9. T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2011).
    [CrossRef] [PubMed]
  10. C. J. van der Laan, “Optical monitoring of nonquarterwave stacks,” Appl. Opt. 25(5), 753–760 (1986).
    [CrossRef] [PubMed]
  11. C. C. Lee, K. Wu, C. C. Kuo, S. H. Chen, “Improvement of the optical coating process by cutting layers with sensitive monitoring wavelengths,” Opt. Express 13(13), 4854–4861 (2005).
    [CrossRef] [PubMed]
  12. B. Chun, C. K. Hwangbo, J. S. Kim, “Optical monitoring of nonquarterwave layers of dielectric multilayer filters using optical admittance,” Opt. Express 14(6), 2473–2480 (2006).
    [CrossRef] [PubMed]
  13. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt. 51(22), 5543–5551 (2012).
    [CrossRef] [PubMed]
  14. A. V. Tikhonravov, M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .
  15. J. L. Zhang, Y. J. Xie, X. B. Cheng, H. F. Jiao, Z. S. Wang, “Thin-film thickness-modulated designs for optical minus filter,” Appl. Opt. 52(23), 5788–5793 (2013).
    [CrossRef] [PubMed]
  16. J. L. Zhang, A. V. Tikhonravov, M. K. Trubetskov, Y. L. Liu, X. B. Cheng, Z. S. Wang, “Design and fabrication of ultra-steep notch filters,” Opt. Express 21(18), 21523–21529 (2013).
    [CrossRef] [PubMed]
  17. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50(20), 3389–3395 (2011).
    [CrossRef] [PubMed]
  18. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
    [CrossRef] [PubMed]

2013 (2)

2012 (2)

2011 (4)

2010 (1)

2007 (1)

2006 (1)

2005 (1)

1996 (1)

1986 (1)

Amotchkina, T. V.

Chen, S. H.

Cheng, X. B.

Chun, B.

DeBell, G.

DeBell, G. W.

Ehlers, H.

Grilli, M. L.

Hwangbo, C. K.

Jiao, H. F.

Kaiser, N.

Kim, J. S.

Kuo, C. C.

Lee, C. C.

Liu, Y. L.

Pervak, V.

Ristau, D.

Romanov, B.

Schlichting, S.

Stenzel, O.

Sytchkova, A. K.

Thelen, A.

Tikhonravov, A. V.

J. L. Zhang, A. V. Tikhonravov, M. K. Trubetskov, Y. L. Liu, X. B. Cheng, Z. S. Wang, “Design and fabrication of ultra-steep notch filters,” Opt. Express 21(18), 21523–21529 (2013).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt. 51(22), 5543–5551 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50(35), 6468–6475 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50(20), 3389–3395 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (2007).
[CrossRef] [PubMed]

Trubetskov, M. K.

J. L. Zhang, A. V. Tikhonravov, M. K. Trubetskov, Y. L. Liu, X. B. Cheng, Z. S. Wang, “Design and fabrication of ultra-steep notch filters,” Opt. Express 21(18), 21523–21529 (2013).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt. 51(22), 5543–5551 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50(35), 6468–6475 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50(20), 3389–3395 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (2007).
[CrossRef] [PubMed]

van der Laan, C. J.

Wang, Z. S.

Wilbrandt, S.

Wu, K.

Xie, Y. J.

Zhang, J. L.

Appl. Opt. (10)

C. J. van der Laan, “Optical monitoring of nonquarterwave stacks,” Appl. Opt. 25(5), 753–760 (1986).
[CrossRef] [PubMed]

A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35(25), 4966–4977 (1996).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (2007).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50(20), 3389–3395 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50(35), 6468–6475 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt. 51(22), 5543–5551 (2012).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
[CrossRef] [PubMed]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2011).
[CrossRef] [PubMed]

J. L. Zhang, Y. J. Xie, X. B. Cheng, H. F. Jiao, Z. S. Wang, “Thin-film thickness-modulated designs for optical minus filter,” Appl. Opt. 52(23), 5788–5793 (2013).
[CrossRef] [PubMed]

Opt. Express (4)

Other (4)

J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2010), IV, pp. 7.15–7.53.

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010).

A. V. Tikhonravov, M. K. Trubetskov, I. Kozlov, S. Alekseev, P. Konotopov and V. Zhupanov, “Correlated choice of design and monitoring strategy,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2013), paper WB3.

A. V. Tikhonravov, M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Layer-thickness profile (a) and spectral transmittance (b) of an ultra-steep hot mirror obtained by stochastic constrained optimization.

Fig. 2
Fig. 2

Wavelength dependence of the refractive index of the Ta2O5 (a) and SiO2 (b) films found in the frame of the homogeneous thin film model.

Fig. 3
Fig. 3

Comparison of measured transmittance data (red crosses) and theoretical transmittance (solid black curve) of the hot mirror.

Fig. 4
Fig. 4

(a) Fitting of measured hot mirror transmittance (red crosses) by the model transmittance (solid curve) when the model with random errors in thicknesses of low-index layers was applied. (b) The relative random errors in low-index layers determined by the reverse engineering procedure.

Fig. 5
Fig. 5

Comparison of measurement transmittance data (red crosses) and theoretical transmittance (solid black curve) of the hot mirror in the second coating run.

Tables (1)

Tables Icon

Table 1 Assignments of monitoring wavelengths for witness chips

Metrics