Abstract

A theory is presented for the transmission of transverse magnetic waves through a finite number of subwavelength slits in metal film. While a single slit achieves the single channel limit on resonance, multiple slits show super-transmission exceeding the single channel limit. The phenomenon of super-transmission is revealed as a result of cross-coupling of modes and confirmed by simulations. The influence of finite permittivity in the IR and microwave regime is included by perturbative corrections to the theory. The theory agrees quantitatively with past experiments and finite-difference time-domain simulations. By considering two or more modes in the slit region, our theory provides an approach to the analysis of cross-coupling among slits, which allows for super-transmission and features of a Fano resonance.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [CrossRef]
  3. Y. Xie, A. R. Zakharian, J. V. Moloney, M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12(25), 6106–6121 (2004).
    [CrossRef] [PubMed]
  4. R. Gordon, A. G. Brolo, D. Sinton, K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
    [CrossRef]
  5. S.-H. Chang, S. K. Gray, G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [CrossRef] [PubMed]
  6. F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
    [CrossRef] [PubMed]
  7. J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  8. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
    [CrossRef] [PubMed]
  9. R. Gordon, “Angle-dependent optical transmission through a narrow slit in a thick metal film,” Phys. Rev. B 75(19), 193401 (2007).
    [CrossRef]
  10. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
    [CrossRef] [PubMed]
  11. R. Gordon, “Near-field interference in a subwavelength double slit in a perfect conductor,” J. Opt. Soc. Amer. A 8(6), L1–L3 (2006).
    [CrossRef]
  12. H. F. Shi, X. G. Luo, C. L. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15(18), 11321–11327 (2007).
    [CrossRef] [PubMed]
  13. P. Lalanne, J. P. Hugonin, J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
    [CrossRef] [PubMed]
  14. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
    [CrossRef] [PubMed]
  15. G. D’Aguanno, D. de Ceglia, N. Mattiucci, M. J. Bloemer, “All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits,” Opt. Lett. 36(11), 1984–1986 (2011).
    [CrossRef] [PubMed]
  16. K. L. Lee, S. H. Wu, P. K. Wei, “Intensity sensitivity of gold nanostructures and its application for high-throughput biosensing,” Opt. Express 17(25), 23104–23113 (2009).
    [CrossRef] [PubMed]
  17. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
    [CrossRef] [PubMed]
  18. Y. M. Bahk, J. W. Choi, J. Kyoung, H. R. Park, K. J. Ahn, D. S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
    [CrossRef] [PubMed]
  19. X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
    [CrossRef] [PubMed]
  20. F. Yang, J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
    [CrossRef]
  21. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
    [CrossRef] [PubMed]
  22. Z. Ruan, S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
    [CrossRef] [PubMed]
  23. D. C. Skigin, R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
    [CrossRef] [PubMed]
  24. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
    [CrossRef] [PubMed]
  25. D. Xiang, L.-L. Wang, X.-F. Li, L. Wang, X. Zhai, Z.-H. Liu, W.-W. Zhao, “Transmission resonances of compound metallic gratings with two subwavelength slits in each period,” Opt. Express 19(3), 2187–2192 (2011).
    [CrossRef] [PubMed]
  26. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
    [CrossRef]
  27. R. Gordon, “Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons,” Phys. Rev. B 74(15), 153417 (2006).
    [CrossRef]
  28. R. Gordon, A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
    [CrossRef] [PubMed]
  29. E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  30. A. E. Miroshnichenko, S. Flach, Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [CrossRef]

2013

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

2012

F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[CrossRef] [PubMed]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[CrossRef] [PubMed]

Y. M. Bahk, J. W. Choi, J. Kyoung, H. R. Park, K. J. Ahn, D. S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

2011

2010

Z. Ruan, S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[CrossRef] [PubMed]

A. E. Miroshnichenko, S. Flach, Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[CrossRef]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

R. Gordon, A. G. Brolo, D. Sinton, K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

2009

2007

R. Gordon, “Angle-dependent optical transmission through a narrow slit in a thick metal film,” Phys. Rev. B 75(19), 193401 (2007).
[CrossRef]

H. F. Shi, X. G. Luo, C. L. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15(18), 11321–11327 (2007).
[CrossRef] [PubMed]

2006

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
[CrossRef] [PubMed]

R. Gordon, “Near-field interference in a subwavelength double slit in a perfect conductor,” J. Opt. Soc. Amer. A 8(6), L1–L3 (2006).
[CrossRef]

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

R. Gordon, “Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons,” Phys. Rev. B 74(15), 153417 (2006).
[CrossRef]

2005

R. Gordon, A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
[CrossRef] [PubMed]

D. C. Skigin, R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

S.-H. Chang, S. K. Gray, G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
[CrossRef] [PubMed]

2004

Y. Xie, A. R. Zakharian, J. V. Moloney, M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12(25), 6106–6121 (2004).
[CrossRef] [PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[CrossRef] [PubMed]

2002

F. Yang, J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[CrossRef]

2001

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

1999

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Ahn, J. S.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

Ahn, K. J.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

Y. M. Bahk, J. W. Choi, J. Kyoung, H. R. Park, K. J. Ahn, D. S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

Bahk, Y. M.

Bantz, K. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Bloemer, M. J.

Brolo, A. G.

R. Gordon, A. G. Brolo, D. Sinton, K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

R. Gordon, A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
[CrossRef] [PubMed]

Catrysse, P. B.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[CrossRef] [PubMed]

Chang, S.-H.

Chen, X. S.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

Choi, J. W.

D’Aguanno, G.

de Ceglia, D.

Depine, R. A.

D. C. Skigin, R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Du, C. L.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Fan, S.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[CrossRef] [PubMed]

Z. Ruan, S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[CrossRef] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gordon, R.

R. Gordon, A. G. Brolo, D. Sinton, K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

R. Gordon, “Angle-dependent optical transmission through a narrow slit in a thick metal film,” Phys. Rev. B 75(19), 193401 (2007).
[CrossRef]

R. Gordon, “Near-field interference in a subwavelength double slit in a perfect conductor,” J. Opt. Soc. Amer. A 8(6), L1–L3 (2006).
[CrossRef]

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

R. Gordon, “Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons,” Phys. Rev. B 74(15), 153417 (2006).
[CrossRef]

R. Gordon, A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
[CrossRef] [PubMed]

Gray, S. K.

Haynes, C. L.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Hibbins, A. P.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[CrossRef] [PubMed]

Hooper, I. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

Im, H.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, D. Sinton, K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

Kim, D. S.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

Y. M. Bahk, J. W. Choi, J. Kyoung, H. R. Park, K. J. Ahn, D. S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

Kim, Y. J.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Kyoung, J.

Lalanne, P.

F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

Lawrence, C. R.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[CrossRef] [PubMed]

Lee, K. L.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, X.-F.

Lindquist, N. C.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Liu, H. T.

F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[CrossRef] [PubMed]

Liu, Z.-H.

Lockyear, M. J.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[CrossRef] [PubMed]

Luo, X. G.

Maier, S. A.

Mansuripur, M.

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Mattiucci, N.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[CrossRef]

Moloney, J. V.

Oh, S. H.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

Oh, S.-H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Park, H. R.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

Y. M. Bahk, J. W. Choi, J. Kyoung, H. R. Park, K. J. Ahn, D. S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

Park, N.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

Pelton, M.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Piao, X. J.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Preist, T. W.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[CrossRef] [PubMed]

Rétif, C.

F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[CrossRef] [PubMed]

Rodier, J. C.

P. Lalanne, J. P. Hugonin, J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

Ruan, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[CrossRef] [PubMed]

Z. Ruan, S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[CrossRef] [PubMed]

Sambles, J. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[CrossRef] [PubMed]

F. Yang, J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[CrossRef]

Schatz, G. C.

Shi, H. F.

Sinton, D.

R. Gordon, A. G. Brolo, D. Sinton, K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

Skigin, D. C.

D. C. Skigin, R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Smiet, C. B.

F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[CrossRef] [PubMed]

Suckling, J. R.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[CrossRef] [PubMed]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

van Beijnum, F.

F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[CrossRef] [PubMed]

van Exter, M. P.

F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[CrossRef] [PubMed]

Verslegers, L.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[CrossRef] [PubMed]

Wang, L.

Wang, L.-L.

Wei, P. K.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, S. H.

Xiang, D.

Xie, Y.

Yang, F.

F. Yang, J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[CrossRef]

Yu, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[CrossRef] [PubMed]

Zakharian, A. R.

Zhai, X.

Zhao, W.-W.

Appl. Phys. Lett.

F. Yang, J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[CrossRef]

J. Opt. Soc. Amer. A

R. Gordon, “Near-field interference in a subwavelength double slit in a perfect conductor,” J. Opt. Soc. Amer. A 8(6), L1–L3 (2006).
[CrossRef]

Laser Photonics Rev.

R. Gordon, A. G. Brolo, D. Sinton, K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

Nano Lett.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Nat. Commun.

X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[CrossRef] [PubMed]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012).
[CrossRef] [PubMed]

Opt. Express

Y. Xie, A. R. Zakharian, J. V. Moloney, M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12(25), 6106–6121 (2004).
[CrossRef] [PubMed]

S.-H. Chang, S. K. Gray, G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
[CrossRef] [PubMed]

Y. M. Bahk, J. W. Choi, J. Kyoung, H. R. Park, K. J. Ahn, D. S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
[CrossRef] [PubMed]

H. F. Shi, X. G. Luo, C. L. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15(18), 11321–11327 (2007).
[CrossRef] [PubMed]

K. L. Lee, S. H. Wu, P. K. Wei, “Intensity sensitivity of gold nanostructures and its application for high-throughput biosensing,” Opt. Express 17(25), 23104–23113 (2009).
[CrossRef] [PubMed]

D. Xiang, L.-L. Wang, X.-F. Li, L. Wang, X. Zhai, Z.-H. Liu, W.-W. Zhao, “Transmission resonances of compound metallic gratings with two subwavelength slits in each period,” Opt. Express 19(3), 2187–2192 (2011).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

R. Gordon, “Angle-dependent optical transmission through a narrow slit in a thick metal film,” Phys. Rev. B 75(19), 193401 (2007).
[CrossRef]

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

R. Gordon, “Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons,” Phys. Rev. B 74(15), 153417 (2006).
[CrossRef]

Phys. Rev. Lett.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[CrossRef] [PubMed]

Z. Ruan, S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[CrossRef] [PubMed]

D. C. Skigin, R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[CrossRef] [PubMed]

Rev. Mod. Phys.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

A. E. Miroshnichenko, S. Flach, Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[CrossRef]

Other

E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of single and multiple subwavelength slit systems under TM incidence.

Fig. 2
Fig. 2

Transmission cross sections of single and 3 slits in PEC with thickness of 1µm and slit width of 0.15 µm. For the 3 slits, the separation d is 0.3µm

Fig. 3
Fig. 3

Resonant frequency of slits in Aluminium films with different slit widths. (a) Single slit of length 19.58 mm, the imaginary part of relative permittivity is −1.071 × 107, and experiment data are taken from Ref. 21. (b) Three uniform slits of length 1 μm, the permittivity used in the calculations and FDTD simulations is from experimental data [29].

Fig. 4
Fig. 4

Comparison of transmissions with the single channel limit. The size of these two slit systems is 1 µm in length and 0.2 µm in width. Size parameter refers to the ratio of the total width w and wavelength, i.e. 2πw/λ . The transmission cross sections are normalized by λ/π.

Fig. 5
Fig. 5

Super-transmission at visible regime for three 40 nm slits separated by 40 nm in a 140 nm thick silver film. The single slit is the same width as the full width of the three slits.

Fig. 6
Fig. 6

Transmitted cross section of three slits system compared with that of neglecting cross coupling terms. The dimensions are the same as that in Fig. 2.

Fig. 7
Fig. 7

The intensity of x component of electric fields | E x / E 0 | 2 of points A and B in Fig. 6, in log scale.

Fig. 8
Fig. 8

Transmission of 5 slits compared with FDTD simulation.

Fig. 9
Fig. 9

The dependence of resonance on the thickness of metal film for three slits and single slit. The other dimensions are the same as in Fig. 2.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E μ = 1 2 rect( x+d a )+ 1 2 rect( x a )+ 1 2 rect( xd a ),
E ν = 1 2 rect( x+d a ) 1 2 rect( x a )+ 1 2 rect( xd a ).
1+ k z / k 0 r( k x )exp( i k x x )d k x = μ + E μ + + μ E μ + ν + E ν + + ν E ν , 1 r( k x )exp( i k x x )d k x = μ + E μ + μ E μ + ν + E ν + ν E ν , k z / k 0 t( k x )exp( i k x x )d k x = μ + E μ + + μ E μ + ν + E ν + + ν E ν , t( k x )exp( i k x x )d k x = μ + E μ + μ E μ + ν + E ν + ν E ν ,
X= A 1 b,
A=[ I μμ +a I μμ a I μν I μν I μν I μν I νν +a I νν a e 2j β μ l ( I μμ a ) I μμ +a e j( β μ + β v )l I μν e j( β μ β v )l I μν e j( β μ + β v )l I μν e j( β μ β v )l I μν e 2j β v l ( I νν a ) I νν +a ], b=[ 2a( 1+1 / 2 ) 2a( 11/ 2 ) 0 0 ],
I μμ = 1 1 u 2 sin 2 ( πau ) π 2 u 2 [ cos( 2πdu )+ 1 2 ] 2 du , I μν = 1 1 u 2 sin 2 ( πau ) π 2 u 2 [ cos 2 ( 2πdu ) 1 2 ]du , I νν = 1 1 u 2 sin 2 ( πau ) π 2 u 2 [ cos( 2πdu ) 1 2 ] 2 du .
σ T =aλ( | μ + | 2 | μ | 2 + | ν + | 2 | ν | 2 ).
tanh( β 2 4 π 2 a 2 )+ β 2 4 π 2 ε m ε m β 2 4 π 2 =0,
Δl=l/ ( 2 π | ε m | a ) .

Metrics