Abstract

We propose a tunable strategy for the ultrathin mantle cloak via metasurface. The tunable cloak is implemented by loading varactor diodes between two neighboring horizontal metallic strips which constitute the metasurface. We demonstrate that the varactor diodes enable the capacitive reactance of the metasurface to be tunable from −157 Ω to −3 Ω when the DC bias voltage is properly changed. The active metasurface is then explored to cloak conformally a conducting cylinder. Both numerical and experiment results show that the cloaking frequency can be continuously controlled from 2.3 GHz to 3.7 GHz by appropriately adjusting the bias voltage. The flexible tunability and good cloaking performance are further examined by the measured field distributions. The advanced features of tunability, low profile, and conformal ability of the ultrathin cloak pave the way for practical applications of cloaking devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Alù, N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
    [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  5. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [CrossRef] [PubMed]
  6. A. Alù, N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
    [CrossRef] [PubMed]
  7. H. F. Ma, T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).
  8. W. X. Jiang, H. F. Ma, Q. Cheng, T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
    [CrossRef]
  9. S. L. He, Y. X. Cui, Y. Q. Ye, P. Zhang, Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
    [CrossRef]
  10. B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
    [CrossRef] [PubMed]
  11. S. Tretyakov, P. Alitalo, O. Luukkonen, C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
    [CrossRef] [PubMed]
  12. W. X. Jiang, H. F. Ma, Q. A. Cheng, T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18(11), 11276–11281 (2010).
    [CrossRef] [PubMed]
  13. Y. Luo, J. Zhang, H. Chen, L. Ran, B.-I. Wu, J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57(12), 3926–3933 (2009).
    [CrossRef]
  14. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials—Theory, Design, and Applications (Springer, 2009).
  15. F. Yang, Z. L. Mei, T. Y. Jin, T. J. Cui, “Dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
    [CrossRef] [PubMed]
  16. P. Y. Chen, J. Soric, A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
    [PubMed]
  17. W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
    [CrossRef]
  18. S. Narayana, Y. Sato, “DC Magnetic Cloak,” Adv. Mater. 24(1), 71–74 (2012).
    [CrossRef] [PubMed]
  19. X. Wang, E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102(11), 113506 (2013).
    [CrossRef]
  20. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  21. J. Fischer, T. Ergin, M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011).
    [CrossRef] [PubMed]
  22. J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  23. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [CrossRef] [PubMed]
  24. B. Zhang, Y. Luo, X. Liu, G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
    [CrossRef] [PubMed]
  25. G. W. Milton, N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2074), 3027–3059 (2006).
  26. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [CrossRef] [PubMed]
  27. D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
    [CrossRef] [PubMed]
  28. W. X. Jiang, T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(2), 026601 (2011).
    [CrossRef] [PubMed]
  29. H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17(22), 19947–19959 (2009).
    [CrossRef] [PubMed]
  30. A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
    [CrossRef]
  31. P. Y. Chen, A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
    [CrossRef]
  32. Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112(3), 034907 (2012).
    [CrossRef]
  33. D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
    [CrossRef]
  34. J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antenn. Propag. 61(2), 748–754 (2013).
    [CrossRef]
  35. A. Alù, N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
    [CrossRef] [PubMed]
  36. R. Fleury, J. C. Soric, A. Alù, “Physical bounds on absorption and scattering for cloaked sensors,” Phys. Rev. B 89(4), 045122 (2014).
    [CrossRef]
  37. C. A. Balanis, Advanced Engineering Electromagnetics[M] (Wiley, 1989), Chap. 8.
  38. C. Pfeiffer, A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
    [CrossRef] [PubMed]
  39. J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
    [CrossRef]

2014 (1)

R. Fleury, J. C. Soric, A. Alù, “Physical bounds on absorption and scattering for cloaked sensors,” Phys. Rev. B 89(4), 045122 (2014).
[CrossRef]

2013 (4)

C. Pfeiffer, A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[CrossRef] [PubMed]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[CrossRef]

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antenn. Propag. 61(2), 748–754 (2013).
[CrossRef]

X. Wang, E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102(11), 113506 (2013).
[CrossRef]

2012 (6)

S. Narayana, Y. Sato, “DC Magnetic Cloak,” Adv. Mater. 24(1), 71–74 (2012).
[CrossRef] [PubMed]

F. Yang, Z. L. Mei, T. Y. Jin, T. J. Cui, “Dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[CrossRef] [PubMed]

P. Y. Chen, J. Soric, A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[PubMed]

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112(3), 034907 (2012).
[CrossRef]

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[CrossRef]

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[CrossRef] [PubMed]

2011 (5)

W. X. Jiang, T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(2), 026601 (2011).
[CrossRef] [PubMed]

J. Fischer, T. Ergin, M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011).
[CrossRef] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

B. Zhang, Y. Luo, X. Liu, G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

P. Y. Chen, A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[CrossRef]

2010 (4)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

W. X. Jiang, H. F. Ma, Q. A. Cheng, T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18(11), 11276–11281 (2010).
[CrossRef] [PubMed]

H. F. Ma, T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).

W. X. Jiang, H. F. Ma, Q. Cheng, T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[CrossRef]

2009 (9)

S. L. He, Y. X. Cui, Y. Q. Ye, P. Zhang, Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

S. Tretyakov, P. Alitalo, O. Luukkonen, C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Y. Luo, J. Zhang, H. Chen, L. Ran, B.-I. Wu, J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57(12), 3926–3933 (2009).
[CrossRef]

A. Alù, N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17(22), 19947–19959 (2009).
[CrossRef] [PubMed]

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[CrossRef]

2008 (3)

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

A. Alù, N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[CrossRef] [PubMed]

2006 (4)

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

G. W. Milton, N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2074), 3027–3059 (2006).

2005 (1)

A. Alù, N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[CrossRef] [PubMed]

Alitalo, P.

S. Tretyakov, P. Alitalo, O. Luukkonen, C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[CrossRef] [PubMed]

Alù, A.

R. Fleury, J. C. Soric, A. Alù, “Physical bounds on absorption and scattering for cloaked sensors,” Phys. Rev. B 89(4), 045122 (2014).
[CrossRef]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[CrossRef]

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112(3), 034907 (2012).
[CrossRef]

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[CrossRef]

P. Y. Chen, J. Soric, A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[PubMed]

P. Y. Chen, A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[CrossRef]

A. Alù, N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[CrossRef] [PubMed]

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[CrossRef]

B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

A. Alù, N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[CrossRef] [PubMed]

A. Alù, N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[CrossRef] [PubMed]

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Chen, H.

Y. Luo, J. Zhang, H. Chen, L. Ran, B.-I. Wu, J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57(12), 3926–3933 (2009).
[CrossRef]

Chen, P. Y.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[CrossRef]

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112(3), 034907 (2012).
[CrossRef]

P. Y. Chen, J. Soric, A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[PubMed]

P. Y. Chen, A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[CrossRef]

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

Cheng, Q.

W. X. Jiang, H. F. Ma, Q. Cheng, T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

Cheng, Q. A.

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cui, T. J.

F. Yang, Z. L. Mei, T. Y. Jin, T. J. Cui, “Dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(2), 026601 (2011).
[CrossRef] [PubMed]

W. X. Jiang, H. F. Ma, Q. A. Cheng, T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18(11), 11276–11281 (2010).
[CrossRef] [PubMed]

W. X. Jiang, H. F. Ma, Q. Cheng, T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[CrossRef]

H. F. Ma, T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17(22), 19947–19959 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

Cui, Y. X.

S. L. He, Y. X. Cui, Y. Q. Ye, P. Zhang, Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

Engheta, N.

B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

A. Alù, N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[CrossRef] [PubMed]

A. Alù, N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[CrossRef] [PubMed]

A. Alù, N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[CrossRef] [PubMed]

Ergin, T.

J. Fischer, T. Ergin, M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Fischer, J.

Fleury, R.

R. Fleury, J. C. Soric, A. Alù, “Physical bounds on absorption and scattering for cloaked sensors,” Phys. Rev. B 89(4), 045122 (2014).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Grbic, A.

C. Pfeiffer, A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[CrossRef] [PubMed]

Gu, J. Q.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[CrossRef] [PubMed]

Han, J. G.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[CrossRef] [PubMed]

He, S. L.

S. L. He, Y. X. Cui, Y. Q. Ye, P. Zhang, Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

Jiang, W. X.

W. X. Jiang, T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(2), 026601 (2011).
[CrossRef] [PubMed]

W. X. Jiang, H. F. Ma, Q. Cheng, T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[CrossRef]

W. X. Jiang, H. F. Ma, Q. A. Cheng, T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18(11), 11276–11281 (2010).
[CrossRef] [PubMed]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17(22), 19947–19959 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

Jin, T. Y.

F. Yang, Z. L. Mei, T. Y. Jin, T. J. Cui, “Dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[CrossRef] [PubMed]

Jin, Y.

S. L. He, Y. X. Cui, Y. Q. Ye, P. Zhang, Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kerkhoff, A.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[CrossRef]

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[CrossRef]

Kong, J. A.

Y. Luo, J. Zhang, H. Chen, L. Ran, B.-I. Wu, J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57(12), 3926–3933 (2009).
[CrossRef]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Li, Y.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antenn. Propag. 61(2), 748–754 (2013).
[CrossRef]

Liang, D. C.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[CrossRef] [PubMed]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

Liu, X.

B. Zhang, Y. Luo, X. Liu, G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Luo, Y.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

B. Zhang, Y. Luo, X. Liu, G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Y. Luo, J. Zhang, H. Chen, L. Ran, B.-I. Wu, J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57(12), 3926–3933 (2009).
[CrossRef]

Luukkonen, O.

S. Tretyakov, P. Alitalo, O. Luukkonen, C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[CrossRef] [PubMed]

Ma, H.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antenn. Propag. 61(2), 748–754 (2013).
[CrossRef]

Ma, H. F.

W. X. Jiang, H. F. Ma, Q. Cheng, T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[CrossRef]

H. F. Ma, T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).

W. X. Jiang, H. F. Ma, Q. A. Cheng, T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18(11), 11276–11281 (2010).
[CrossRef] [PubMed]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17(22), 19947–19959 (2009).
[CrossRef] [PubMed]

Mei, Z. L.

F. Yang, Z. L. Mei, T. Y. Jin, T. J. Cui, “Dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[CrossRef] [PubMed]

Melin, K.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[CrossRef]

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[CrossRef]

Milton, G. W.

G. W. Milton, N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2074), 3027–3059 (2006).

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Moreno, G.

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[CrossRef]

Narayana, S.

S. Narayana, Y. Sato, “DC Magnetic Cloak,” Adv. Mater. 24(1), 71–74 (2012).
[CrossRef] [PubMed]

Nicorovici, N.-A. P.

G. W. Milton, N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2074), 3027–3059 (2006).

Padooru, Y. R.

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112(3), 034907 (2012).
[CrossRef]

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Pfeiffer, C.

C. Pfeiffer, A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[CrossRef] [PubMed]

Qu, S.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antenn. Propag. 61(2), 748–754 (2013).
[CrossRef]

Rainwater, D.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[CrossRef]

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[CrossRef]

Ran, L.

Y. Luo, J. Zhang, H. Chen, L. Ran, B.-I. Wu, J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57(12), 3926–3933 (2009).
[CrossRef]

Sato, Y.

S. Narayana, Y. Sato, “DC Magnetic Cloak,” Adv. Mater. 24(1), 71–74 (2012).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Semouchkina, E.

X. Wang, E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102(11), 113506 (2013).
[CrossRef]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

Simovski, C.

S. Tretyakov, P. Alitalo, O. Luukkonen, C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[CrossRef] [PubMed]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Soric, J.

P. Y. Chen, J. Soric, A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[PubMed]

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[CrossRef]

Soric, J. C.

R. Fleury, J. C. Soric, A. Alù, “Physical bounds on absorption and scattering for cloaked sensors,” Phys. Rev. B 89(4), 045122 (2014).
[CrossRef]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Tretyakov, S.

S. Tretyakov, P. Alitalo, O. Luukkonen, C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[CrossRef] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Wang, J.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antenn. Propag. 61(2), 748–754 (2013).
[CrossRef]

Wang, X.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antenn. Propag. 61(2), 748–754 (2013).
[CrossRef]

X. Wang, E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102(11), 113506 (2013).
[CrossRef]

Wegener, M.

J. Fischer, T. Ergin, M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Wu, B.-I.

Y. Luo, J. Zhang, H. Chen, L. Ran, B.-I. Wu, J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57(12), 3926–3933 (2009).
[CrossRef]

Xu, Z.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antenn. Propag. 61(2), 748–754 (2013).
[CrossRef]

Yakovlev, A. B.

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112(3), 034907 (2012).
[CrossRef]

Yang, F.

F. Yang, Z. L. Mei, T. Y. Jin, T. J. Cui, “Dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[CrossRef] [PubMed]

Yang, X. M.

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17(22), 19947–19959 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

Yang, Y. M.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[CrossRef] [PubMed]

Ye, Y. Q.

S. L. He, Y. X. Cui, Y. Q. Ye, P. Zhang, Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, B.

B. Zhang, Y. Luo, X. Liu, G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Zhang, J.

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antenn. Propag. 61(2), 748–754 (2013).
[CrossRef]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

Y. Luo, J. Zhang, H. Chen, L. Ran, B.-I. Wu, J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57(12), 3926–3933 (2009).
[CrossRef]

Zhang, P.

S. L. He, Y. X. Cui, Y. Q. Ye, P. Zhang, Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

Zhang, S.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[CrossRef] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, W. L.

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhou, X. Y.

Adv. Mater. (3)

P. Y. Chen, J. Soric, A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[PubMed]

S. Narayana, Y. Sato, “DC Magnetic Cloak,” Adv. Mater. 24(1), 71–74 (2012).
[CrossRef] [PubMed]

D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

X. Wang, E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102(11), 113506 (2013).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

W. X. Jiang, H. F. Ma, Q. Cheng, T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antenn. Propag. 61(2), 748–754 (2013).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

Y. Luo, J. Zhang, H. Chen, L. Ran, B.-I. Wu, J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57(12), 3926–3933 (2009).
[CrossRef]

J. Appl. Phys. (1)

Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112(3), 034907 (2012).
[CrossRef]

Mater. Today (1)

S. L. He, Y. X. Cui, Y. Q. Ye, P. Zhang, Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

Nat. Commun. (2)

H. F. Ma, T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

New J. Phys. (2)

D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[CrossRef]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (3)

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[CrossRef]

P. Y. Chen, A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[CrossRef]

R. Fleury, J. C. Soric, A. Alù, “Physical bounds on absorption and scattering for cloaked sensors,” Phys. Rev. B 89(4), 045122 (2014).
[CrossRef]

Phys. Rev. E (1)

A. Alù, N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

W. X. Jiang, T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(2), 026601 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett. (7)

A. Alù, N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[CrossRef] [PubMed]

B. Zhang, Y. Luo, X. Liu, G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

S. Tretyakov, P. Alitalo, O. Luukkonen, C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009).
[CrossRef] [PubMed]

F. Yang, Z. L. Mei, T. Y. Jin, T. J. Cui, “Dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012).
[CrossRef] [PubMed]

A. Alù, N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[CrossRef] [PubMed]

C. Pfeiffer, A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[CrossRef] [PubMed]

Proc. R. Soc. A Math. Phys. Eng. Sci. (1)

G. W. Milton, N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2074), 3027–3059 (2006).

Science (5)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Other (2)

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials—Theory, Design, and Applications (Springer, 2009).

C. A. Balanis, Advanced Engineering Electromagnetics[M] (Wiley, 1989), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) A conducting cylinder covered by the tunable ultrathin mantle cloak, which is illuminated by TM-polarized plane waves at the normal incidence. (b) The cross-section view of the conducting cylinder and the cloak around it. (c) The dimensions of a planar unit cell of the mantle cloak.

Fig. 2
Fig. 2

The simulated surface reactance of the unit cell in the frequency range from 1 to 5 GHz for different values of capacitance of the varactor diode.

Fig. 3
Fig. 3

(a) The photograph of the fabricated tunable ultrathin mantle cloak, in which the left panel shows the details of the varactor diodes on the cloak, and the right panel shows the nearly zero-thickness capacitive strips printed on a flexible and ultrathin dielectric film, which can be wrapped on arbitrarily curved surfaces. (b) The spice model of the varactor diode SMV-1430. (c) The circuit model used to extract the effective circuit parameters of the varactor diode based on its spice model.

Fig. 4
Fig. 4

(a) The simulated scatteing gains in the frequency range from 1 to 5 GHz for different values of the capacitance of the varactor diodes. As the voltage decreases (i.e. capacitance increases), the scattering-dip frequency becomes smaller, showing the significant tunability. (b)-(e) report the simulated results of the bistatic scattering gains at different bias voltages ranging from 0.5 to 23 V for different angles in the azimuthal plane at (b) θ = 30°, (c) θ = 90°, (d) θ = 150° and (e) θ = 180°, respectively. Note that the corresponding capacitances of the varactor diodes are used according to Table 1.

Fig. 5
Fig. 5

The simulated electric-field (Ez) distributions in the azimuthal plane under the normal incidence of TM polarized waves for different cases. (a) Free space at 3.18 GHz. (b) The uncloaked object at 3.18 GHz. (c) The cloaked object at 3.18 GHz. (d) The cloaked object at 2.38 GHz. (e) The cloaked object at 2.82 GHz. (f) The cloaked object at 3.82 GHz.

Fig. 6
Fig. 6

The experimental setup for the measurement of bistatic scattering in the microwave chamber, which includes the transmitting and receiving horn antennas, the tested conducting cylinder with and without cloak, and the DC power supply, providing various voltages from 0 to 23 V.

Fig. 7
Fig. 7

The experimental results of the bistatic scattering gains at different bias voltages ranging from 0.5 to 23 V for different angles (θ) between the transmitting and receiving antennas in the azimuthal plane. (a) θ = 30°. (b) θ = 90°. (c) θ = 150°. (d) θ = 180°.

Fig. 8
Fig. 8

The experimental setup of the near-electric-field mapping system in the microwave chanmber, which includes the transmitting horn antenna, the receiving monopole probe, the tested conducting cylinder with and without cloak, the DC power supply, and a computer-controlled stage that can move in two dimensions.

Fig. 9
Fig. 9

The measured TM-polarized-electric field (Ez) distributions in the azimuthal plane for different DC bias voltages. Each testing scenario is illuminated with a microwave horn antenna under the TM-polarized Gaussian wavefront at the normal incidence. (a), (b) and (c) are the cases when DC voltage is set to 2 V (at 2.78 GHz) in the free space, the object without cloak, and the object with cloak, respectively. (d), (e) and (f) are the cases when DC voltage is set to 23 V (at 3.85 GHz) in the free space, the object without cloak, and the object with cloak, respectively. The lower part of each subfigure is the mirror of the upper part, and the middle gray region is the blind area that cannot be measured. The yellow circular disk represents the copper cylinder, and the red circular ring represents the cloak. Note that all the units of the x and y axes are millimeter.

Tables (1)

Tables Icon

Table 1 The effective circuit parameters for the varactor diode SMV-1430 used in this design.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E tan ={ z ^ E 0 n= i n [ a n TM J n ( k c ρ )+ b n TM Y n ( k c ρ ) ] e inφ a<ρ< a c z ^ E 0 n= i n [ J n ( k 0 ρ )+ c n TM H n ( 1 ) ( k 0 ρ ) ] e inφ ρ> a c
H φ ={ φ ^ iω ε c E 0 k c n= i n e inφ [ a n TM J n ( k c ρ )+ b n TM Y n ( k c ρ ) ] a<ρ< a c φ ^ iω ε 0 E 0 k 0 n= i n e inφ [ J n ( k 0 ρ )+ c n TM H n (1) ( k 0 ρ ) ] ρ> a c
[ J n ( k c a ) Y n ( k c a ) 0 J n ( k c a c ) Y n ( k c a c ) H n ( k 0 a c ) J n ( k c a c )+iω Z s ε c k c J ( k c a c ) Y n ( k c a c )+iω Z s ε c k c Y n ( k c a c ) iω Z s ε 0 k 0 H n ( k 0 a c ) ][ b n TM d n TM c n TM ] =[ 0 J n ( k 0 a c ) iω Z s ε 0 k 0 J n ( k 0 a c ) ]
c n TM = U n TM U n TM +i V n TM
U n TM =| J n ( k c a ) Y n ( k c a ) 0 J n ( k c a c ) Y n ( k c a c ) J n ( k 0 a c ) J n ( k c a c )+iω Z s ε c k c J ( k c a c ) Y n ( k c a c )+iω Z s ε c k c Y n ( k c a c ) iω Z s ε 0 k 0 J n ( k 0 a c ) |
V n TM =| J n ( k c a ) Y n ( k c a ) 0 J n ( k c a c ) Y n ( k c a c ) Y n ( k 0 a c ) J n ( k c a c )+iω Z s ε c k c J ( k c a c ) Y n ( k c a c )+iω Z s ε c k c Y n ( k c a c ) iω Z s ε 0 k 0 Y n ( k 0 a c ) |
Z s = 2( 1 S 21 S 11 ) η( 1+ S 21 + S 11 )
σ= ( 4π ) 3 R t 2 R r 2 G t G r λ 0 2 | S 21,T S 21,B | 2

Metrics