Abstract

Ring artifacts in computed tomography (CT) images degrade image quality and obscure the true shapes of objects. While several correction methods have been developed, their performances are often task-dependent and not generally applicable. Here, we propose a novel method to reduce ring artifacts by calculating the ratio of adjacent detector elements in the projection data, termed the line-ratio. Our method estimates the sensitivity of each detector element and equalizes them in sinogram space. As a result, the stripe pattern can be effectively removed from sinogram data, thereby also removing ring artifacts from the reconstructed CT image. Numerical simulations were performed to evaluate and compare the performance of our method with that of conventional methods. We also tested our method experimentally and demonstrated that our method has superior performance to other methods.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Liu, S. R. Watt-Smith, S. M. Smith, “A description for computed tomography based on sinusoidal curves,” J. XRay Sci. Technol. 11(4), 205–218 (2003).
    [PubMed]
  2. P. Rüegsegger, B. Koller, R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
    [CrossRef] [PubMed]
  3. J. T. Dobbins, D. J. Godfrey, “Digital X-ray tomosynthesis: current state of the art and clinical potential,” Phys. Med. Biol. 48(19), R65–R106 (2003).
    [CrossRef] [PubMed]
  4. V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, L. V. Hoorebeke, P. Jacobs, “Recent progress in X-ray CT as a geosciences tool,” Appl. Geochem. 21(5), 826–832 (2006).
    [CrossRef]
  5. G. L. Zeng, “Nonuniform noise propagation by using the ramp filter in fan-beam computed tomography,” IEEE Trans. Med. Imaging 23(6), 690–695 (2004).
    [CrossRef] [PubMed]
  6. J. Hsieh, Computed Tomography-Principles, Artifacts, and Recent Advances (SPIE Publications, 2003).
  7. J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” Proc. SPIE 3336, Medical Imaging 1998: Physics of Medical Imaging, 348 (1998), pp. 348–354.
  8. G. R. Davis, J. C. Elliott, “X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image,” Nucl. Instrum. Meth. A. Equipment. 394(1-2), 157–162 (1997).
    [CrossRef]
  9. C. Raven, “Numerical removal of ring artifacts in microtomography,” Rev. Sci. Instrum. 69(8), 2978–2980 (1998).
    [CrossRef]
  10. X. Tang, R. Ning, R. Yu, D. Conover, “Cone beam volume CT image artifacts caused by defective cells in X-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
    [CrossRef] [PubMed]
  11. J. Sijbers, A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
    [CrossRef] [PubMed]
  12. M. Axelsson, S. Svensson, and G. Borgefors, “Reduction of ring artifacts in high resolution X-ray microtomography images,” (Berlin, 2006), pp. 61–70.
  13. M. Boin, A. Haibel, “Compensation of ring artefacts in synchrotron tomographic images,” Opt. Express 14(25), 12071–12075 (2006).
    [CrossRef] [PubMed]
  14. R. A. Ketcham, “New algorithms for ring artifact removal,” Proc. SPIE 6318, 63180O (2006).
    [CrossRef]
  15. Y. Kyriakou, D. Prell, W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), N385–N391 (2009).
    [CrossRef] [PubMed]
  16. B. Münch, P. Trtik, F. Marone, M. Stampanoni, “Stripe and ring artifact removal with combined wavelet--Fourier filtering,” Opt. Express 17(10), 8567–8591 (2009).
    [CrossRef] [PubMed]
  17. D. Prell, Y. Kyriakou, W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
    [CrossRef] [PubMed]
  18. E. M. Abu Anas, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
    [CrossRef] [PubMed]
  19. F. Sadi, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
    [PubMed]
  20. S. Titarenko, P. J. Withers, A. Yagola, “An analytical formula for ring artefact suppression in X-ray tomography,” Appl. Math. Lett. 23(12), 1489–1495 (2010).
    [CrossRef]
  21. V. Titarenko, R. Bradley, C. Martin, P. J. Withers, and S. Titarenko, “Regularization methods for inverse problems in X-ray tomography,” Proc. SPIE 7804, Developments in X-Ray Tomography VII, 78040Z (2010).
  22. E. M. Anas, J. G. Kim, S. Y. Lee, K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(1), 72 (2011).
    [CrossRef] [PubMed]
  23. E. M. A. Anas, S. Y. Lee, K. Hasan, “Classification of ring artifacts for their effective removal using type adaptive correction schemes,” Comput. Biol. Med. 41(6), 390–401 (2011).
    [CrossRef] [PubMed]
  24. E. M. A. Anas, J. Kim, S. Y. Lee, and M. K. Hasan, “Ring artifact corrections in flat-panel detector based cone beam CT,” Proc. SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging (2011).
  25. E. M. A. Anas, J. G. Kim, S. Y. Lee, M. K. Hasan, “High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging,” Phys. Med. Biol. 56(19), 6495–6519 (2011).
    [CrossRef] [PubMed]
  26. A. N. M. Ashrafuzzaman, S. Y. Lee, and M. K. Hasan, “A self-adaptive approach for the detection and correction of stripes in the sinogram: Suppression of ring artifacts in CT imaging,” Eurasip. J. Adv. Sig. Pr. 2011 (2011).
  27. F. Brun, G. Kourousias, D. Dreossi, L. Mancini, and G. Tromba, “A comparative evaluation of ring artifacts reduction filters for X-ray computed microtomography images,” in 2011 18th IEEE International Conference on Image Processing (ICIP) (IEEE, 2011), pp. 405–408.
  28. S. Titarenko, V. Titarenko, A. Kyrieleis, P. J. Withers, F. De Carlo, “Suppression of ring artefacts when tomographing anisotropically attenuating samples,” J. Synchrotron Radiat. 18(3), 427–435 (2011).
    [CrossRef] [PubMed]
  29. M. K. Hasan, F. Sadi, S. Y. Lee, “Removal of ring artifacts in micro-CT imaging using iterative morphological filters,” Signal. Image. Video. P. 6, 41–53 (2012).
  30. G. L. Zeng, Medical Image Reconstruction: A Conceptual Tutorial (Springer, 2010).
  31. D. Library, “CT DICOM Samples,” (DICOM Library, 2012), http://www.dicomlibrary.com/?study=1.2.826.0.1.3680043.8.1055.1.20111102150758591.92402465.76095170 .
  32. I. Avcibaş, B. Sankur, K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
    [CrossRef]

2012 (1)

M. K. Hasan, F. Sadi, S. Y. Lee, “Removal of ring artifacts in micro-CT imaging using iterative morphological filters,” Signal. Image. Video. P. 6, 41–53 (2012).

2011 (4)

E. M. Anas, J. G. Kim, S. Y. Lee, K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(1), 72 (2011).
[CrossRef] [PubMed]

E. M. A. Anas, S. Y. Lee, K. Hasan, “Classification of ring artifacts for their effective removal using type adaptive correction schemes,” Comput. Biol. Med. 41(6), 390–401 (2011).
[CrossRef] [PubMed]

E. M. A. Anas, J. G. Kim, S. Y. Lee, M. K. Hasan, “High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging,” Phys. Med. Biol. 56(19), 6495–6519 (2011).
[CrossRef] [PubMed]

S. Titarenko, V. Titarenko, A. Kyrieleis, P. J. Withers, F. De Carlo, “Suppression of ring artefacts when tomographing anisotropically attenuating samples,” J. Synchrotron Radiat. 18(3), 427–435 (2011).
[CrossRef] [PubMed]

2010 (3)

E. M. Abu Anas, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
[CrossRef] [PubMed]

F. Sadi, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
[PubMed]

S. Titarenko, P. J. Withers, A. Yagola, “An analytical formula for ring artefact suppression in X-ray tomography,” Appl. Math. Lett. 23(12), 1489–1495 (2010).
[CrossRef]

2009 (3)

D. Prell, Y. Kyriakou, W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
[CrossRef] [PubMed]

Y. Kyriakou, D. Prell, W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), N385–N391 (2009).
[CrossRef] [PubMed]

B. Münch, P. Trtik, F. Marone, M. Stampanoni, “Stripe and ring artifact removal with combined wavelet--Fourier filtering,” Opt. Express 17(10), 8567–8591 (2009).
[CrossRef] [PubMed]

2006 (3)

M. Boin, A. Haibel, “Compensation of ring artefacts in synchrotron tomographic images,” Opt. Express 14(25), 12071–12075 (2006).
[CrossRef] [PubMed]

R. A. Ketcham, “New algorithms for ring artifact removal,” Proc. SPIE 6318, 63180O (2006).
[CrossRef]

V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, L. V. Hoorebeke, P. Jacobs, “Recent progress in X-ray CT as a geosciences tool,” Appl. Geochem. 21(5), 826–832 (2006).
[CrossRef]

2004 (2)

G. L. Zeng, “Nonuniform noise propagation by using the ramp filter in fan-beam computed tomography,” IEEE Trans. Med. Imaging 23(6), 690–695 (2004).
[CrossRef] [PubMed]

J. Sijbers, A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[CrossRef] [PubMed]

2003 (2)

J. T. Dobbins, D. J. Godfrey, “Digital X-ray tomosynthesis: current state of the art and clinical potential,” Phys. Med. Biol. 48(19), R65–R106 (2003).
[CrossRef] [PubMed]

J. J. Liu, S. R. Watt-Smith, S. M. Smith, “A description for computed tomography based on sinusoidal curves,” J. XRay Sci. Technol. 11(4), 205–218 (2003).
[PubMed]

2002 (1)

I. Avcibaş, B. Sankur, K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
[CrossRef]

2001 (1)

X. Tang, R. Ning, R. Yu, D. Conover, “Cone beam volume CT image artifacts caused by defective cells in X-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

1998 (1)

C. Raven, “Numerical removal of ring artifacts in microtomography,” Rev. Sci. Instrum. 69(8), 2978–2980 (1998).
[CrossRef]

1997 (1)

G. R. Davis, J. C. Elliott, “X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image,” Nucl. Instrum. Meth. A. Equipment. 394(1-2), 157–162 (1997).
[CrossRef]

1996 (1)

P. Rüegsegger, B. Koller, R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
[CrossRef] [PubMed]

Abu Anas, E. M.

E. M. Abu Anas, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
[CrossRef] [PubMed]

Anas, E. M.

E. M. Anas, J. G. Kim, S. Y. Lee, K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(1), 72 (2011).
[CrossRef] [PubMed]

Anas, E. M. A.

E. M. A. Anas, S. Y. Lee, K. Hasan, “Classification of ring artifacts for their effective removal using type adaptive correction schemes,” Comput. Biol. Med. 41(6), 390–401 (2011).
[CrossRef] [PubMed]

E. M. A. Anas, J. G. Kim, S. Y. Lee, M. K. Hasan, “High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging,” Phys. Med. Biol. 56(19), 6495–6519 (2011).
[CrossRef] [PubMed]

Avcibas, I.

I. Avcibaş, B. Sankur, K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
[CrossRef]

Boin, M.

Cnudde, V.

V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, L. V. Hoorebeke, P. Jacobs, “Recent progress in X-ray CT as a geosciences tool,” Appl. Geochem. 21(5), 826–832 (2006).
[CrossRef]

Conover, D.

X. Tang, R. Ning, R. Yu, D. Conover, “Cone beam volume CT image artifacts caused by defective cells in X-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

Davis, G. R.

G. R. Davis, J. C. Elliott, “X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image,” Nucl. Instrum. Meth. A. Equipment. 394(1-2), 157–162 (1997).
[CrossRef]

De Carlo, F.

S. Titarenko, V. Titarenko, A. Kyrieleis, P. J. Withers, F. De Carlo, “Suppression of ring artefacts when tomographing anisotropically attenuating samples,” J. Synchrotron Radiat. 18(3), 427–435 (2011).
[CrossRef] [PubMed]

Dierick, M.

V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, L. V. Hoorebeke, P. Jacobs, “Recent progress in X-ray CT as a geosciences tool,” Appl. Geochem. 21(5), 826–832 (2006).
[CrossRef]

Dobbins, J. T.

J. T. Dobbins, D. J. Godfrey, “Digital X-ray tomosynthesis: current state of the art and clinical potential,” Phys. Med. Biol. 48(19), R65–R106 (2003).
[CrossRef] [PubMed]

Elliott, J. C.

G. R. Davis, J. C. Elliott, “X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image,” Nucl. Instrum. Meth. A. Equipment. 394(1-2), 157–162 (1997).
[CrossRef]

Godfrey, D. J.

J. T. Dobbins, D. J. Godfrey, “Digital X-ray tomosynthesis: current state of the art and clinical potential,” Phys. Med. Biol. 48(19), R65–R106 (2003).
[CrossRef] [PubMed]

Haibel, A.

Hasan, K.

E. M. A. Anas, S. Y. Lee, K. Hasan, “Classification of ring artifacts for their effective removal using type adaptive correction schemes,” Comput. Biol. Med. 41(6), 390–401 (2011).
[CrossRef] [PubMed]

E. M. Anas, J. G. Kim, S. Y. Lee, K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(1), 72 (2011).
[CrossRef] [PubMed]

Hasan, M. K.

M. K. Hasan, F. Sadi, S. Y. Lee, “Removal of ring artifacts in micro-CT imaging using iterative morphological filters,” Signal. Image. Video. P. 6, 41–53 (2012).

E. M. A. Anas, J. G. Kim, S. Y. Lee, M. K. Hasan, “High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging,” Phys. Med. Biol. 56(19), 6495–6519 (2011).
[CrossRef] [PubMed]

F. Sadi, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
[PubMed]

E. M. Abu Anas, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
[CrossRef] [PubMed]

Hoorebeke, L. V.

V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, L. V. Hoorebeke, P. Jacobs, “Recent progress in X-ray CT as a geosciences tool,” Appl. Geochem. 21(5), 826–832 (2006).
[CrossRef]

Jacobs, P.

V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, L. V. Hoorebeke, P. Jacobs, “Recent progress in X-ray CT as a geosciences tool,” Appl. Geochem. 21(5), 826–832 (2006).
[CrossRef]

Kalender, W. A.

D. Prell, Y. Kyriakou, W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
[CrossRef] [PubMed]

Y. Kyriakou, D. Prell, W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), N385–N391 (2009).
[CrossRef] [PubMed]

Ketcham, R. A.

R. A. Ketcham, “New algorithms for ring artifact removal,” Proc. SPIE 6318, 63180O (2006).
[CrossRef]

Kim, J. G.

E. M. A. Anas, J. G. Kim, S. Y. Lee, M. K. Hasan, “High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging,” Phys. Med. Biol. 56(19), 6495–6519 (2011).
[CrossRef] [PubMed]

E. M. Anas, J. G. Kim, S. Y. Lee, K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(1), 72 (2011).
[CrossRef] [PubMed]

Koller, B.

P. Rüegsegger, B. Koller, R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
[CrossRef] [PubMed]

Kyriakou, Y.

D. Prell, Y. Kyriakou, W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
[CrossRef] [PubMed]

Y. Kyriakou, D. Prell, W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), N385–N391 (2009).
[CrossRef] [PubMed]

Kyrieleis, A.

S. Titarenko, V. Titarenko, A. Kyrieleis, P. J. Withers, F. De Carlo, “Suppression of ring artefacts when tomographing anisotropically attenuating samples,” J. Synchrotron Radiat. 18(3), 427–435 (2011).
[CrossRef] [PubMed]

Lee, S. Y.

M. K. Hasan, F. Sadi, S. Y. Lee, “Removal of ring artifacts in micro-CT imaging using iterative morphological filters,” Signal. Image. Video. P. 6, 41–53 (2012).

E. M. A. Anas, J. G. Kim, S. Y. Lee, M. K. Hasan, “High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging,” Phys. Med. Biol. 56(19), 6495–6519 (2011).
[CrossRef] [PubMed]

E. M. A. Anas, S. Y. Lee, K. Hasan, “Classification of ring artifacts for their effective removal using type adaptive correction schemes,” Comput. Biol. Med. 41(6), 390–401 (2011).
[CrossRef] [PubMed]

E. M. Anas, J. G. Kim, S. Y. Lee, K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(1), 72 (2011).
[CrossRef] [PubMed]

E. M. Abu Anas, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
[CrossRef] [PubMed]

F. Sadi, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
[PubMed]

Liu, J. J.

J. J. Liu, S. R. Watt-Smith, S. M. Smith, “A description for computed tomography based on sinusoidal curves,” J. XRay Sci. Technol. 11(4), 205–218 (2003).
[PubMed]

Marone, F.

Masschaele, B.

V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, L. V. Hoorebeke, P. Jacobs, “Recent progress in X-ray CT as a geosciences tool,” Appl. Geochem. 21(5), 826–832 (2006).
[CrossRef]

Müller, R.

P. Rüegsegger, B. Koller, R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
[CrossRef] [PubMed]

Münch, B.

Ning, R.

X. Tang, R. Ning, R. Yu, D. Conover, “Cone beam volume CT image artifacts caused by defective cells in X-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

Postnov, A.

J. Sijbers, A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[CrossRef] [PubMed]

Prell, D.

Y. Kyriakou, D. Prell, W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), N385–N391 (2009).
[CrossRef] [PubMed]

D. Prell, Y. Kyriakou, W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
[CrossRef] [PubMed]

Raven, C.

C. Raven, “Numerical removal of ring artifacts in microtomography,” Rev. Sci. Instrum. 69(8), 2978–2980 (1998).
[CrossRef]

Rüegsegger, P.

P. Rüegsegger, B. Koller, R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
[CrossRef] [PubMed]

Sadi, F.

M. K. Hasan, F. Sadi, S. Y. Lee, “Removal of ring artifacts in micro-CT imaging using iterative morphological filters,” Signal. Image. Video. P. 6, 41–53 (2012).

F. Sadi, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
[PubMed]

Sankur, B.

I. Avcibaş, B. Sankur, K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
[CrossRef]

Sayood, K.

I. Avcibaş, B. Sankur, K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
[CrossRef]

Sijbers, J.

J. Sijbers, A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[CrossRef] [PubMed]

Smith, S. M.

J. J. Liu, S. R. Watt-Smith, S. M. Smith, “A description for computed tomography based on sinusoidal curves,” J. XRay Sci. Technol. 11(4), 205–218 (2003).
[PubMed]

Stampanoni, M.

Tang, X.

X. Tang, R. Ning, R. Yu, D. Conover, “Cone beam volume CT image artifacts caused by defective cells in X-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

Titarenko, S.

S. Titarenko, V. Titarenko, A. Kyrieleis, P. J. Withers, F. De Carlo, “Suppression of ring artefacts when tomographing anisotropically attenuating samples,” J. Synchrotron Radiat. 18(3), 427–435 (2011).
[CrossRef] [PubMed]

S. Titarenko, P. J. Withers, A. Yagola, “An analytical formula for ring artefact suppression in X-ray tomography,” Appl. Math. Lett. 23(12), 1489–1495 (2010).
[CrossRef]

Titarenko, V.

S. Titarenko, V. Titarenko, A. Kyrieleis, P. J. Withers, F. De Carlo, “Suppression of ring artefacts when tomographing anisotropically attenuating samples,” J. Synchrotron Radiat. 18(3), 427–435 (2011).
[CrossRef] [PubMed]

Trtik, P.

Vlassenbroeck, J.

V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, L. V. Hoorebeke, P. Jacobs, “Recent progress in X-ray CT as a geosciences tool,” Appl. Geochem. 21(5), 826–832 (2006).
[CrossRef]

Watt-Smith, S. R.

J. J. Liu, S. R. Watt-Smith, S. M. Smith, “A description for computed tomography based on sinusoidal curves,” J. XRay Sci. Technol. 11(4), 205–218 (2003).
[PubMed]

Withers, P. J.

S. Titarenko, V. Titarenko, A. Kyrieleis, P. J. Withers, F. De Carlo, “Suppression of ring artefacts when tomographing anisotropically attenuating samples,” J. Synchrotron Radiat. 18(3), 427–435 (2011).
[CrossRef] [PubMed]

S. Titarenko, P. J. Withers, A. Yagola, “An analytical formula for ring artefact suppression in X-ray tomography,” Appl. Math. Lett. 23(12), 1489–1495 (2010).
[CrossRef]

Yagola, A.

S. Titarenko, P. J. Withers, A. Yagola, “An analytical formula for ring artefact suppression in X-ray tomography,” Appl. Math. Lett. 23(12), 1489–1495 (2010).
[CrossRef]

Yu, R.

X. Tang, R. Ning, R. Yu, D. Conover, “Cone beam volume CT image artifacts caused by defective cells in X-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

Zeng, G. L.

G. L. Zeng, “Nonuniform noise propagation by using the ramp filter in fan-beam computed tomography,” IEEE Trans. Med. Imaging 23(6), 690–695 (2004).
[CrossRef] [PubMed]

Appl. Geochem. (1)

V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, L. V. Hoorebeke, P. Jacobs, “Recent progress in X-ray CT as a geosciences tool,” Appl. Geochem. 21(5), 826–832 (2006).
[CrossRef]

Appl. Math. Lett. (1)

S. Titarenko, P. J. Withers, A. Yagola, “An analytical formula for ring artefact suppression in X-ray tomography,” Appl. Math. Lett. 23(12), 1489–1495 (2010).
[CrossRef]

Biomed. Eng. Online (1)

E. M. Anas, J. G. Kim, S. Y. Lee, K. Hasan, “Comparison of ring artifact removal methods using flat panel detector based CT images,” Biomed. Eng. Online 10(1), 72 (2011).
[CrossRef] [PubMed]

Calcif. Tissue Int. (1)

P. Rüegsegger, B. Koller, R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
[CrossRef] [PubMed]

Comput. Biol. Med. (2)

E. M. A. Anas, S. Y. Lee, K. Hasan, “Classification of ring artifacts for their effective removal using type adaptive correction schemes,” Comput. Biol. Med. 41(6), 390–401 (2011).
[CrossRef] [PubMed]

F. Sadi, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter,” Comput. Biol. Med. 40(1), 109–118 (2010).
[PubMed]

IEEE Trans. Med. Imaging (1)

G. L. Zeng, “Nonuniform noise propagation by using the ramp filter in fan-beam computed tomography,” IEEE Trans. Med. Imaging 23(6), 690–695 (2004).
[CrossRef] [PubMed]

J. Electron. Imaging (1)

I. Avcibaş, B. Sankur, K. Sayood, “Statistical evaluation of image quality measures,” J. Electron. Imaging 11(2), 206–223 (2002).
[CrossRef]

J. Synchrotron Radiat. (1)

S. Titarenko, V. Titarenko, A. Kyrieleis, P. J. Withers, F. De Carlo, “Suppression of ring artefacts when tomographing anisotropically attenuating samples,” J. Synchrotron Radiat. 18(3), 427–435 (2011).
[CrossRef] [PubMed]

J. XRay Sci. Technol. (1)

J. J. Liu, S. R. Watt-Smith, S. M. Smith, “A description for computed tomography based on sinusoidal curves,” J. XRay Sci. Technol. 11(4), 205–218 (2003).
[PubMed]

Med. Phys. (1)

X. Tang, R. Ning, R. Yu, D. Conover, “Cone beam volume CT image artifacts caused by defective cells in X-ray flat panel imagers and the artifact removal using a wavelet-analysis-based algorithm,” Med. Phys. 28(5), 812–825 (2001).
[CrossRef] [PubMed]

Nucl. Instrum. Meth. A. Equipment. (1)

G. R. Davis, J. C. Elliott, “X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image,” Nucl. Instrum. Meth. A. Equipment. 394(1-2), 157–162 (1997).
[CrossRef]

Opt. Express (2)

Phys. Med. Biol. (6)

Y. Kyriakou, D. Prell, W. A. Kalender, “Ring artifact correction for high-resolution micro CT,” Phys. Med. Biol. 54(17), N385–N391 (2009).
[CrossRef] [PubMed]

J. Sijbers, A. Postnov, “Reduction of ring artefacts in high resolution micro-CT reconstructions,” Phys. Med. Biol. 49(14), N247–N253 (2004).
[CrossRef] [PubMed]

J. T. Dobbins, D. J. Godfrey, “Digital X-ray tomosynthesis: current state of the art and clinical potential,” Phys. Med. Biol. 48(19), R65–R106 (2003).
[CrossRef] [PubMed]

E. M. A. Anas, J. G. Kim, S. Y. Lee, M. K. Hasan, “High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging,” Phys. Med. Biol. 56(19), 6495–6519 (2011).
[CrossRef] [PubMed]

D. Prell, Y. Kyriakou, W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54(12), 3881–3895 (2009).
[CrossRef] [PubMed]

E. M. Abu Anas, S. Y. Lee, M. K. Hasan, “Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram,” Phys. Med. Biol. 55(22), 6911–6930 (2010).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. A. Ketcham, “New algorithms for ring artifact removal,” Proc. SPIE 6318, 63180O (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

C. Raven, “Numerical removal of ring artifacts in microtomography,” Rev. Sci. Instrum. 69(8), 2978–2980 (1998).
[CrossRef]

Signal. Image. Video. P. (1)

M. K. Hasan, F. Sadi, S. Y. Lee, “Removal of ring artifacts in micro-CT imaging using iterative morphological filters,” Signal. Image. Video. P. 6, 41–53 (2012).

Other (9)

G. L. Zeng, Medical Image Reconstruction: A Conceptual Tutorial (Springer, 2010).

D. Library, “CT DICOM Samples,” (DICOM Library, 2012), http://www.dicomlibrary.com/?study=1.2.826.0.1.3680043.8.1055.1.20111102150758591.92402465.76095170 .

V. Titarenko, R. Bradley, C. Martin, P. J. Withers, and S. Titarenko, “Regularization methods for inverse problems in X-ray tomography,” Proc. SPIE 7804, Developments in X-Ray Tomography VII, 78040Z (2010).

A. N. M. Ashrafuzzaman, S. Y. Lee, and M. K. Hasan, “A self-adaptive approach for the detection and correction of stripes in the sinogram: Suppression of ring artifacts in CT imaging,” Eurasip. J. Adv. Sig. Pr. 2011 (2011).

F. Brun, G. Kourousias, D. Dreossi, L. Mancini, and G. Tromba, “A comparative evaluation of ring artifacts reduction filters for X-ray computed microtomography images,” in 2011 18th IEEE International Conference on Image Processing (ICIP) (IEEE, 2011), pp. 405–408.

E. M. A. Anas, J. Kim, S. Y. Lee, and M. K. Hasan, “Ring artifact corrections in flat-panel detector based cone beam CT,” Proc. SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging (2011).

M. Axelsson, S. Svensson, and G. Borgefors, “Reduction of ring artifacts in high resolution X-ray microtomography images,” (Berlin, 2006), pp. 61–70.

J. Hsieh, Computed Tomography-Principles, Artifacts, and Recent Advances (SPIE Publications, 2003).

J. A. Seibert, J. M. Boone, and K. K. Lindfors, “Flat-field correction technique for digital detectors,” Proc. SPIE 3336, Medical Imaging 1998: Physics of Medical Imaging, 348 (1998), pp. 348–354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The simulation study about the expected average and median ratios. (a) Shepp-Logan phantom, (b) ideal sinogram, (c) distribution of all ratios of the adjacent detector elements, (d) the ratios at a specific projection angle of 0 degree, (e) the expected average ratios, (f) the expected median ratios. The expected ratios are close to 1.

Fig. 2
Fig. 2

Flow chart of the line-ratio-based ring artifact removal algorithm.

Fig. 3
Fig. 3

Comparative results of ring artifact reduction after applying synthetic phantom 1. (a) Without ring artifacts, (b) with ring artifacts, (c) after the MA method, (d) after the MedF method, (e) after the line-ratio method, (f) profiles of each method, and (g)-(k) are the magnified views of the boxed area in (a)-(e), respectively.

Fig. 4
Fig. 4

Comparative results of ring artifact reduction after applying synthetic phantom 2. (a) Without ring artifacts, (b) with ring artifacts, (c) after the MA method, (d) after the MedF method, (e) after the line-ratio method, (f) profiles of each method, and (g)-(k) are the magnified views of the boxed area in (a)-(e), respectively.

Fig. 5
Fig. 5

Comparative results of ring artifact reduction after applying synthetic phantom 3. (a) Without ring artifacts, (b) with ring artifacts, (c) after the MA method, (d) after the MedF method, and (e) after the line-ratio method. (f) Profiles of each method. (g)-(k) are the magnified views of the boxed area in (a)-(e), respectively.

Fig. 6
Fig. 6

MSE values for each method.

Fig. 7
Fig. 7

Comparative results of ring artifact reduction on the first real data set (Real Data 1) (a) with ring artifacts, (b) after applying the MA method, (c) after applying the MedF method, and (d) after applying the line-ratio method. (e) Magnified images of (a)-(d). (f) Profiles of each method.

Fig. 8
Fig. 8

Comparative results of ring artifact reduction on the first real data set (Real Data 2) (a) with ring artifacts, (b) after applying the MA method, (c) after applying the MedF method, and (d) after applying the line-ratio method. (e) Magnified images of (a)-(d). (f) Profiles of each method.

Tables (1)

Tables Icon

Table 1 Performance Comparison of Different Methods in Terms of the MSE

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

D(t,φ)=F(t,φ)E(t)
R F (t,φ)= F(t+1,φ) F(t,φ)
1 M i=1 M R F (t, φ i ) = 1 M i=1 M F(t+1, φ i ) F(t, φ i ) 1
R(t,φ)= D(t+1,φ) D(t,φ) = F(t+1,φ)E(t+1) F(t,φ)E(t)
1 M i=1 M R(t, φ i ) = 1 M i=1 M D(t+1, φ i ) D(t, φ i ) = 1 M i=1 M F(t+1, φ i )E(t+1) F(t, φ i )E(t) = E(t+1) E(t) 1 M i=1 M F(t+1, φ i ) F(t, φ i ) E(t+1) E(t)
R s (t,φ)={xR(t,φ)|D(t,φ)<T(t)}(t=1,2,N)
R m (t)=median( R s (t,φ))
C(t)={ i=1 Nt R m (Ni) (1tN1) 1(t=N)
D ¯ (t,φ)= C f (t)D(t,φ)
MSE= 1 mn i=0 m1 j=0 n1 [ I o (i,j) I ^ (i,j)] 2

Metrics