Abstract

A hybrid four-hole AsSe2-As2S5 microstructured optical fiber (MOF) with a large refractive index difference is fabricated by the rod-in-tube drawing technique. The core and the cladding are made from the AsSe2 glass and As2S5 glass, respectively. The propagation loss is ~1.8 dB/m and the nonlinear coefficient is ~2.03 × 104 km−1W−1at 2000 nm. Raman scattering is observed in the normal dispersion regime when the fiber is pumped by a 2 μm mode-locked picosecond fiber laser. Additionally, soliton is generated in the anomalous dispersion regime when the fiber is pumped by an optical parametric oscillator (OPO) at the pump wavelength of ~3000 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Russell, “Photonic-crystal fibers,” IEEE J. Lightw. Tech. 24(12), 4729–4749 (2006).
    [CrossRef]
  2. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  3. T. L. Cheng, R. Usaki, Z. C. Duan, W. Q. Gao, D. H. Deng, M. S. Liao, Y. Kanou, M. Matsumoto, T. Misumi, T. Suzuki, Y. Ohishi, “Soliton self-frequency shift and third-harmonic generation in a four-hole As₂S₅ microstructured optical fiber,” Opt. Express 22(4), 3740–3746 (2014).
    [CrossRef] [PubMed]
  4. A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
    [CrossRef] [PubMed]
  5. S. P. Singh, S. K. Varshney, “Tunable optical parametric amplification characteristics of liquid-filled chalcogenide photonic crystal fibers,” Opt. Lett. 38(19), 3846–3849 (2013).
    [CrossRef] [PubMed]
  6. Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photon. Technol. Lett. 25(3), 306–309 (2013).
    [CrossRef]
  7. P. Toupin, L. Brilland, G. Renversez, J. Troles, “All-solid all-chalcogenide microstructured optical fiber,” Opt. Express 21(12), 14643–14648 (2013).
    [CrossRef] [PubMed]
  8. Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21(24), 1804–1806 (2009).
    [CrossRef]
  9. T. Hori, J. Takayanagi, N. Nishizawa, T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12(2), 317–324 (2004).
    [CrossRef] [PubMed]
  10. T. L. Cheng, Z. C. Duan, M. S. Liao, W. Q. Gao, D. H. Deng, T. Suzuki, Y. Ohishi, “A simple all-solid tellurite microstructured optical fiber,” Opt. Express 21(3), 3318–3323 (2013).
    [CrossRef] [PubMed]
  11. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
    [CrossRef] [PubMed]
  12. H. Ebendorff-Heidepriem, T. C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett. 33(23), 2861–2863 (2008).
    [CrossRef] [PubMed]
  13. E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
    [CrossRef]
  14. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
    [CrossRef] [PubMed]
  15. R. Stepien, R. Buczynski, D. Pysz, I. Kujawa, A. Filipkowski, M. Mirkowska, R. Diduszko, “Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers,” J. Non-Cryst. Solids 357(3), 873–883 (2011).
    [CrossRef]
  16. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
    [CrossRef] [PubMed]
  17. X. Gai, D. Y. Choi, S. Madden, Z. Yang, R. Wang, B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
    [CrossRef] [PubMed]
  18. R. T. White, T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers,” Opt. Lett. 36(12), 2351–2353 (2011).
    [CrossRef] [PubMed]
  19. M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett. 36(15), 2859–2861 (2011).
    [CrossRef] [PubMed]
  20. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
  21. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
    [CrossRef] [PubMed]
  22. Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J. Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett. 37(11), 1889–1891 (2012).
    [CrossRef] [PubMed]
  23. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
    [CrossRef]
  24. C. S. Brès, S. Zlatanovic, A. O. J. Wiberg, S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011).
    [CrossRef] [PubMed]
  25. C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
    [CrossRef]
  26. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
    [CrossRef] [PubMed]
  27. W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber,” Laser Phys. Lett. 10(9), 095107 (2013).
    [CrossRef]
  28. D. Lezal, “Chalcogenide glasses - survey and progress,” J. Optoelectron. Adv. Mater. 5, 23–34 (2003).
  29. F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, D. J. Richardson, “All-solid highly nonlinear singlemode fibers with a tailored dispersion profile,” Opt. Express 19(1), 66–80 (2011).
    [CrossRef] [PubMed]
  30. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
    [CrossRef] [PubMed]

2014 (1)

2013 (5)

2012 (4)

2011 (9)

R. T. White, T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers,” Opt. Lett. 36(12), 2351–2353 (2011).
[CrossRef] [PubMed]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett. 36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
[CrossRef] [PubMed]

F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, D. J. Richardson, “All-solid highly nonlinear singlemode fibers with a tailored dispersion profile,” Opt. Express 19(1), 66–80 (2011).
[CrossRef] [PubMed]

C. S. Brès, S. Zlatanovic, A. O. J. Wiberg, S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011).
[CrossRef] [PubMed]

C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[CrossRef] [PubMed]

R. Stepien, R. Buczynski, D. Pysz, I. Kujawa, A. Filipkowski, M. Mirkowska, R. Diduszko, “Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers,” J. Non-Cryst. Solids 357(3), 873–883 (2011).
[CrossRef]

2010 (3)

2009 (1)

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21(24), 1804–1806 (2009).
[CrossRef]

2008 (1)

2006 (3)

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

P. J. Russell, “Photonic-crystal fibers,” IEEE J. Lightw. Tech. 24(12), 4729–4749 (2006).
[CrossRef]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

2004 (1)

2003 (1)

D. Lezal, “Chalcogenide glasses - survey and progress,” J. Optoelectron. Adv. Mater. 5, 23–34 (2003).

2000 (1)

Adam, J. L.

C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

Aggarwal, I. D.

Ahmed, N.

Barbosa, L. C.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

Bartelt, H.

Benson, T. M.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21(24), 1804–1806 (2009).
[CrossRef]

Bony, P.-Y.

Bourdon, P.

Boussard-Plédel, C.

C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Bramerie, L.

Brès, C. S.

Brilland, L.

P. Toupin, L. Brilland, G. Renversez, J. Troles, “All-solid all-chalcogenide microstructured optical fiber,” Opt. Express 21(12), 14643–14648 (2013).
[CrossRef] [PubMed]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[CrossRef] [PubMed]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett. 36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Brito Cruz, C. H.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

Buczynski, R.

R. Stepien, R. Buczynski, D. Pysz, I. Kujawa, A. Filipkowski, M. Mirkowska, R. Diduszko, “Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers,” J. Non-Cryst. Solids 357(3), 873–883 (2011).
[CrossRef]

Bureau, B.

C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Calvez, L.

Canat, G.

Chartier, T.

Cheng, T. L.

Cheong, S. W.

Chillcce, E. F.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

Choi, D. Y.

Coen, S.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Conseil, C.

C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Cordeiro, C. M. B.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

Costa e Silva, M.

Coulombier, Q.

Dekker, S. A.

Deng, D. H.

Désévédavy, F.

Diduszko, R.

R. Stepien, R. Buczynski, D. Pysz, I. Kujawa, A. Filipkowski, M. Mirkowska, R. Diduszko, “Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers,” J. Non-Cryst. Solids 357(3), 873–883 (2011).
[CrossRef]

Dolinar, S.

Duan, Z. C.

Dudley, J. M.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Duhant, M.

Ebendorff-Heidepriem, H.

Eggleton, B. J.

El Amraoui, M.

El-Amraoui, M.

Fatome, J.

Feng, X.

Filipkowski, A.

R. Stepien, R. Buczynski, D. Pysz, I. Kujawa, A. Filipkowski, M. Mirkowska, R. Diduszko, “Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers,” J. Non-Cryst. Solids 357(3), 873–883 (2011).
[CrossRef]

Foo, T. C.

Fortier, C.

Furniss, D.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21(24), 1804–1806 (2009).
[CrossRef]

Gadret, G.

Gai, X.

Gao, W.

Gao, W. Q.

Gattass, R. R.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[CrossRef]

Gay, M.

Genty, G.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Goto, T.

Hartung, A.

Heidt, A. M.

Hemming, A.

Hori, T.

Huang, H.

Hudson, D. D.

Hwang, H. Y.

Jackson, S. D.

Judge, A. C.

Jules, J. C.

Jules, J.-C.

Kanou, Y.

Katsufuji, T.

Kawashima, H.

Kibler, B.

Kohoutek, T.

Kujawa, I.

R. Stepien, R. Buczynski, D. Pysz, I. Kujawa, A. Filipkowski, M. Mirkowska, R. Diduszko, “Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers,” J. Non-Cryst. Solids 357(3), 873–883 (2011).
[CrossRef]

Lancaster, D. G.

Le, S. D.

Lenglé, K.

Lenz, G.

Lezal, D.

D. Lezal, “Chalcogenide glasses - survey and progress,” J. Optoelectron. Adv. Mater. 5, 23–34 (2003).

Li, E.

Li, Q. Q.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21(24), 1804–1806 (2009).
[CrossRef]

Li, Y.

Lian, Z. G.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21(24), 1804–1806 (2009).
[CrossRef]

Liao, M. S.

Limpert, J.

Lin, W.

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photon. Technol. Lett. 25(3), 306–309 (2013).
[CrossRef]

Lines, M. E.

Liu, B.

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photon. Technol. Lett. 25(3), 306–309 (2013).
[CrossRef]

Loh, W. H.

Lu, Y.

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photon. Technol. Lett. 25(3), 306–309 (2013).
[CrossRef]

Lucas, J.

C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Matsumoto, M.

Mechin, D.

C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

Méchin, D.

Messaddeq, Y.

Miao, Y.

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photon. Technol. Lett. 25(3), 306–309 (2013).
[CrossRef]

Mirkowska, M.

R. Stepien, R. Buczynski, D. Pysz, I. Kujawa, A. Filipkowski, M. Mirkowska, R. Diduszko, “Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers,” J. Non-Cryst. Solids 357(3), 873–883 (2011).
[CrossRef]

Misumi, T.

Monro, T. M.

Moore, R. C.

Mouawad, O.

Nguyen, D. M.

Nguyen, T. N.

Nguyen, V. Q.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[CrossRef]

Nishizawa, N.

Ohishi, Y.

Petrovich, M. N.

Polacchini, C. F.

Poletti, F.

Ponzo, G. M.

Pureza, P. C.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[CrossRef]

Pysz, D.

R. Stepien, R. Buczynski, D. Pysz, I. Kujawa, A. Filipkowski, M. Mirkowska, R. Diduszko, “Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers,” J. Non-Cryst. Solids 357(3), 873–883 (2011).
[CrossRef]

Radic, S.

Ren, Y.

Renard, W.

Renversez, G.

Richardson, D. J.

Rohwer, E. G.

Rothhardt, J.

Russell, P. J.

P. J. Russell, “Photonic-crystal fibers,” IEEE J. Lightw. Tech. 24(12), 4729–4749 (2006).
[CrossRef]

Sanghera, J. S.

Savelii, I.

Seddon, A. B.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21(24), 1804–1806 (2009).
[CrossRef]

Shaw, L. B.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[CrossRef]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).

Singh, S. P.

Skripatchev, I.

Slusher, R. E.

Smektala, F.

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[CrossRef] [PubMed]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett. 36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Spälter, S.

Stepien, R.

R. Stepien, R. Buczynski, D. Pysz, I. Kujawa, A. Filipkowski, M. Mirkowska, R. Diduszko, “Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers,” J. Non-Cryst. Solids 357(3), 873–883 (2011).
[CrossRef]

Suzuki, T.

Szpulak, M.

Takayanagi, J.

Thual, M.

Toupin, P.

Troles, J.

P. Toupin, L. Brilland, G. Renversez, J. Troles, “All-solid all-chalcogenide microstructured optical fiber,” Opt. Express 21(12), 14643–14648 (2013).
[CrossRef] [PubMed]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[CrossRef] [PubMed]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett. 36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Tünnermann, A.

Tur, M.

Usaki, R.

Varshney, S. K.

Wang, R.

White, R. T.

Wiberg, A. O. J.

Willner, A. E.

Yan, Y.

Yang, J. Y.

Yang, Z.

Yao, J.

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photon. Technol. Lett. 25(3), 306–309 (2013).
[CrossRef]

Yuan, W.

W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber,” Laser Phys. Lett. 10(9), 095107 (2013).
[CrossRef]

Yue, Y.

Zhang, H.

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photon. Technol. Lett. 25(3), 306–309 (2013).
[CrossRef]

Zhang, K.

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photon. Technol. Lett. 25(3), 306–309 (2013).
[CrossRef]

Zhang, L.

Zhang, W.

Zimmermann, J.

Zlatanovic, S.

IEEE J. Lightw. Tech. (1)

P. J. Russell, “Photonic-crystal fibers,” IEEE J. Lightw. Tech. 24(12), 4729–4749 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21(24), 1804–1806 (2009).
[CrossRef]

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photon. Technol. Lett. 25(3), 306–309 (2013).
[CrossRef]

J. Non-Cryst. Solids (3)

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

R. Stepien, R. Buczynski, D. Pysz, I. Kujawa, A. Filipkowski, M. Mirkowska, R. Diduszko, “Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers,” J. Non-Cryst. Solids 357(3), 873–883 (2011).
[CrossRef]

C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

D. Lezal, “Chalcogenide glasses - survey and progress,” J. Optoelectron. Adv. Mater. 5, 23–34 (2003).

Laser Phys. Lett. (1)

W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber,” Laser Phys. Lett. 10(9), 095107 (2013).
[CrossRef]

Opt. Express (12)

F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, D. J. Richardson, “All-solid highly nonlinear singlemode fibers with a tailored dispersion profile,” Opt. Express 19(1), 66–80 (2011).
[CrossRef] [PubMed]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[CrossRef] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

C. S. Brès, S. Zlatanovic, A. O. J. Wiberg, S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011).
[CrossRef] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[CrossRef] [PubMed]

P. Toupin, L. Brilland, G. Renversez, J. Troles, “All-solid all-chalcogenide microstructured optical fiber,” Opt. Express 21(12), 14643–14648 (2013).
[CrossRef] [PubMed]

T. Hori, J. Takayanagi, N. Nishizawa, T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12(2), 317–324 (2004).
[CrossRef] [PubMed]

T. L. Cheng, Z. C. Duan, M. S. Liao, W. Q. Gao, D. H. Deng, T. Suzuki, Y. Ohishi, “A simple all-solid tellurite microstructured optical fiber,” Opt. Express 21(3), 3318–3323 (2013).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

T. L. Cheng, R. Usaki, Z. C. Duan, W. Q. Gao, D. H. Deng, M. S. Liao, Y. Kanou, M. Matsumoto, T. Misumi, T. Suzuki, Y. Ohishi, “Soliton self-frequency shift and third-harmonic generation in a four-hole As₂S₅ microstructured optical fiber,” Opt. Express 22(4), 3740–3746 (2014).
[CrossRef] [PubMed]

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[CrossRef]

Opt. Lett. (8)

Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J. Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, A. E. Willner, “Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber,” Opt. Lett. 37(11), 1889–1891 (2012).
[CrossRef] [PubMed]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
[CrossRef] [PubMed]

S. P. Singh, S. K. Varshney, “Tunable optical parametric amplification characteristics of liquid-filled chalcogenide photonic crystal fibers,” Opt. Lett. 38(19), 3846–3849 (2013).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, T. C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett. 33(23), 2861–2863 (2008).
[CrossRef] [PubMed]

X. Gai, D. Y. Choi, S. Madden, Z. Yang, R. Wang, B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37(18), 3870–3872 (2012).
[CrossRef] [PubMed]

R. T. White, T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers,” Opt. Lett. 36(12), 2351–2353 (2011).
[CrossRef] [PubMed]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett. 36(15), 2859–2861 (2011).
[CrossRef] [PubMed]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Absorbance and transmission spectra of As2S5 and AsSe2 glasses. (b) Linear material refractive indices of As2S5 and AsSe2glasses.

Fig. 2
Fig. 2

TMA measured results of As2S5 and AsSe2 glasses samples.

Fig. 3
Fig. 3

Schematic diagram for the fabrication of the AsSe2-As2S5 MOF. (a) AsSe2 rod. (b) Elongated AsSe2 rod. (c) Structured As2S5 rod with the elongated AsSe2 rod in the center hole. (d) Preform. (e) As2S5 tube with the preform. (f) AsSe2-As2S5 MOF.

Fig. 4
Fig. 4

Photos of the structured As2S5 rod and AsSe2 rod. (a) AsSe2 rod and structured As2S5 rod. (b) Elongated AsSe2 rods. (c) Structured As2S5 rod with the elongated AsSe2 rod in the center hole. (d) Preform. (e) Cross sections of the preform.

Fig. 5
Fig. 5

Cross section of the AsSe2-As2S5 MOF taken by an optical microscope (a), and SEM (b).

Fig. 6
Fig. 6

Cross-section of the refractive index profile along x axis of the AsSe2-As2S5 MOF.

Fig. 7
Fig. 7

(a) Fundamental mode-field intensity at 2000 nm. (b) Calculated effective refractive indices of fundamental mode and the chromatic dispersion of the AsSe2-As2S5 MOF.

Fig. 8
Fig. 8

(a) Experimental setup for Raman scattering and soliton in the AsSe2-As2S5 MOF. (b) Mode field profile intensity at ~3000 nm.

Fig. 9
Fig. 9

Raman output spectra for a pump wavelength of ~1958 nm with the pump average powers of ~50 (a), and 110 mW (b).

Fig. 10
Fig. 10

Spontaneous Raman spectrum of the AsSe2 bulk glass sample.

Fig. 11
Fig. 11

Soliton spectrum in the anomalous dispersion regime with the pump average power of ~72 mW at the pump wavelength of ~3000 nm.

Tables (1)

Tables Icon

Table 1 Sellmeier Coefficients of AsSe2 and As2S5 Glasses

Metrics