Abstract

The behavior of the electromagnetic field interaction with gold nanotriangles organized in bow-tie arrays is investigated. A side-by-side comparison between the measured absorbance of the array and the modelled integrated electric field resonances confined around the gold structures is presented and discussed to explain the spectral shift between both parameters. Finite difference time domain calculations and Raman measurements of gold triangles of different sizes and periodicity are systematically performed. Numerical calculations show that the spectral maximum of the electric field varies in distinct areas over the metallic structures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
    [CrossRef]
  2. P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
    [CrossRef] [PubMed]
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  4. S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(1), S57–S64 (2011).
    [CrossRef]
  5. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
    [CrossRef] [PubMed]
  6. E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2008).
  7. A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
    [CrossRef] [PubMed]
  8. B. M. Ross, L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34(7), 896–898 (2009).
    [CrossRef] [PubMed]
  9. J. Zuloaga, P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
    [CrossRef] [PubMed]
  10. B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
    [CrossRef] [PubMed]
  11. A. Tavlove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time (Artech House, 2005).
  12. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2011).
  13. C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
    [CrossRef]
  14. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
    [CrossRef]
  15. W. Xie, C. Herrmann, K. Kömpe, M. Haase, S. Schlücker, “Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions,” J. Am. Chem. Soc. 133(48), 19302–19305 (2011).
    [CrossRef] [PubMed]
  16. D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren, Z. Q. Tian, “Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS,” Chem. Commun. (Camb.) 47(9), 2520–2522 (2011).
    [CrossRef] [PubMed]

2012 (1)

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[CrossRef]

2011 (4)

J. Zuloaga, P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(1), S57–S64 (2011).
[CrossRef]

W. Xie, C. Herrmann, K. Kömpe, M. Haase, S. Schlücker, “Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions,” J. Am. Chem. Soc. 133(48), 19302–19305 (2011).
[CrossRef] [PubMed]

D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren, Z. Q. Tian, “Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS,” Chem. Commun. (Camb.) 47(9), 2520–2522 (2011).
[CrossRef] [PubMed]

2010 (1)

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef] [PubMed]

2007 (1)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

2005 (1)

A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

2004 (1)

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Adam, P. M.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[CrossRef]

Anceau, C.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Awada, C.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[CrossRef]

Bachelot, R.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[CrossRef]

Baudrion, A. L.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[CrossRef]

Bergman, D. J.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

Brasselet, S.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Charra, F.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[CrossRef]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Douillard, L.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[CrossRef]

Duche, D.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(1), S57–S64 (2011).
[CrossRef]

Escoubas, L.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(1), S57–S64 (2011).
[CrossRef]

Flory, F.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(1), S57–S64 (2011).
[CrossRef]

Galarreta, B. C.

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[CrossRef] [PubMed]

Haase, M.

W. Xie, C. Herrmann, K. Kömpe, M. Haase, S. Schlücker, “Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions,” J. Am. Chem. Soc. 133(48), 19302–19305 (2011).
[CrossRef] [PubMed]

Harté, E.

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[CrossRef] [PubMed]

Herrmann, C.

W. Xie, C. Herrmann, K. Kömpe, M. Haase, S. Schlücker, “Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions,” J. Am. Chem. Soc. 133(48), 19302–19305 (2011).
[CrossRef] [PubMed]

Huang, R.

D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren, Z. Q. Tian, “Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS,” Chem. Commun. (Camb.) 47(9), 2520–2522 (2011).
[CrossRef] [PubMed]

Huang, Y. F.

D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren, Z. Q. Tian, “Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS,” Chem. Commun. (Camb.) 47(9), 2520–2522 (2011).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Kömpe, K.

W. Xie, C. Herrmann, K. Kömpe, M. Haase, S. Schlücker, “Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions,” J. Am. Chem. Soc. 133(48), 19302–19305 (2011).
[CrossRef] [PubMed]

Lagugné-Labarthet, F.

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[CrossRef] [PubMed]

Le Rouzo, J.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(1), S57–S64 (2011).
[CrossRef]

Lee, L. P.

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Liu, X. M.

D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren, Z. Q. Tian, “Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS,” Chem. Commun. (Camb.) 47(9), 2520–2522 (2011).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Marquestaut, N.

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[CrossRef] [PubMed]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Nordlander, P.

J. Zuloaga, P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

Norton, P. R.

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[CrossRef] [PubMed]

Perron, A.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[CrossRef]

Popescu, T.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[CrossRef]

Ren, B.

D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren, Z. Q. Tian, “Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS,” Chem. Commun. (Camb.) 47(9), 2520–2522 (2011).
[CrossRef] [PubMed]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Ross, B. M.

Schlücker, S.

W. Xie, C. Herrmann, K. Kömpe, M. Haase, S. Schlücker, “Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions,” J. Am. Chem. Soc. 133(48), 19302–19305 (2011).
[CrossRef] [PubMed]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef] [PubMed]

Simon, J. J.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(1), S57–S64 (2011).
[CrossRef]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

Tian, Z. Q.

D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren, Z. Q. Tian, “Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS,” Chem. Commun. (Camb.) 47(9), 2520–2522 (2011).
[CrossRef] [PubMed]

Torchio, P.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(1), S57–S64 (2011).
[CrossRef]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Vedraine, S.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(1), S57–S64 (2011).
[CrossRef]

Wu, D. Y.

D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren, Z. Q. Tian, “Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS,” Chem. Commun. (Camb.) 47(9), 2520–2522 (2011).
[CrossRef] [PubMed]

Xie, W.

W. Xie, C. Herrmann, K. Kömpe, M. Haase, S. Schlücker, “Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions,” J. Am. Chem. Soc. 133(48), 19302–19305 (2011).
[CrossRef] [PubMed]

Yockell-Lelievre, H.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[CrossRef]

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Zhao, L. B.

D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren, Z. Q. Tian, “Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS,” Chem. Commun. (Camb.) 47(9), 2520–2522 (2011).
[CrossRef] [PubMed]

Zuloaga, J.

J. Zuloaga, P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

Zyss, J.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Annu Rev Anal Chem (Palo Alto Calif) (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef] [PubMed]

Chem. Commun. (Camb.) (1)

D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren, Z. Q. Tian, “Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS,” Chem. Commun. (Camb.) 47(9), 2520–2522 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

W. Xie, C. Herrmann, K. Kömpe, M. Haase, S. Schlücker, “Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions,” J. Am. Chem. Soc. 133(48), 19302–19305 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

J. Phys. Chem. B (1)

A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[CrossRef]

Nano Lett. (1)

J. Zuloaga, P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(1), S57–S64 (2011).
[CrossRef]

Other (4)

E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2008).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

A. Tavlove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time (Artech House, 2005).

W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Measurements (solid line) and calculations (dotted line) of the normalized absorbance spectrum obtained on the structure for two polarizations: (black) along X-axis and (red) along Y-axis. Electric field image of triangles with L = 140 nm, G = 100 nm, Px = 500 nm, and Py = 200 nm with two polarizations: along X (b) and Y (c) axes at �� = 580 nm, X axis at �� = 750 nm (d) and Y axis at �� = 800 nm (e).

Fig. 2
Fig. 2

(a) Absorbance spectrum of triangles L = 100 nm-diameter, G = 100 nm, Px = 400 nm and Py = 200 nm with a polarization along X-axis. Electric field intensity integrated in a triangular volume centred and 10/20/50 nm larger than the nanotriangles are reported. (b) Color coded map of wavelength where the electric field intensity is maximum for a x-polarized input field.

Fig. 3
Fig. 3

(a) Normalized absorbance spectrum (black) and normalized electric field intensity (red) of 40 nm-diameter gold sphere. (b) Real part (red) and imaginary part (black) calculated for a 40 nm-diameter gold sphere. (c)Normalized absorbance spectrum (dotted line) of triangles with L = 100 nm, G = 100 nm, Px = 400 nm and Py = 200 nm in an absorptive matrix (refractive index of 1 and extinction coefficient of k = 0.01 (red), 0.1 (blue), 0.2 (black)) with a polarization along X calculated by FDTD. The normalized electric field intensity integrated around the nanoparticles is reported (continuous line). The gap between absorption and electric field increases when the imaginary part k increases, showing an effect of the optical properties of the matrix on the enhancement of the field.

Fig. 4
Fig. 4

(a) Raman spectrum of 4-NTP on gold triangle G = 100 nm, and L = 80, 100, 120, 140 nm. (b) Measured normalized absorbance spectrum and (c) calculated electric field intensity of gold triangle G = 100 nm, and L = 80, 100, 120, 140 nm in air.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C scat = 1 6π ( 2π λ ) 4 | α | 2   ,   C abs = 2π λ Im[ α ],  α=4π D 2 3 ε m ε d   ε m +2 ε d ,

Metrics