Abstract

Previously, the effect of pulse bandwidth compression or broadening was observed in reflection from a moving front together with the Doppler shift. In this letter, an approach is presented, which alters pulse bandwidth without change in the central frequency. It occurs when light is reflected from a moving front of an otherwise stationary photonic crystal. This means that the photonic crystal lattice as such is stationary and only its boundary to the environment is moving, thus extruding (or shortening) the photonic crystal medium. The compression (broadening) factor depends on the front velocity and is the same as for the conventional Doppler shift. Complete reflection and transformation of the pulse can be achieved even with weak refractive index contrast, what makes the approach experimentally viable.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Ives, “The Doppler effect from moving mirrors,” J. Opt. Soc. Am. 30(6), 255–257 (1940).
    [CrossRef]
  2. C. S. Tsai, B. A. Auld, “Wave interactions with moving boundaries,” J. Appl. Phys. 38(5), 2106–2115 (1967).
    [CrossRef]
  3. M. Lampe, E. Ott, J. H. Walker, “Interaction of electromagnetic waves with a moving ionization front,” Phys. Fluids 21(1), 42–54 (1978).
    [CrossRef]
  4. C. H. Lai, T. C. Katsouleas, W. B. Mori, D. Whittum, “Frequency upshifting by an ionization front in a magnetized plasma,” IEEE Trans. Plasma Sci. 21(1), 45–52 (1993).
    [CrossRef]
  5. W. B. Mori, T. Katsouleas, J. M. Dawson, C. H. Lai, “Conversion of DC fields in a capacitor array to radiation by a relativistic ionization front,” Phys. Rev. Lett. 74(4), 542–545 (1995).
    [CrossRef] [PubMed]
  6. C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C. Joshi, W. B. Mori, “Demonstration of microwave generation from a static field by a relativistic ionization front in a capacitor array,” Phys. Rev. Lett. 77(23), 4764–4767 (1996).
    [CrossRef] [PubMed]
  7. V. I. Semenova, “Reflection of electromagnetic waves from an ionization front,” Radiophys. Quantum Electron. 10(8), 599–604 (1967).
    [CrossRef]
  8. M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
    [CrossRef] [PubMed]
  9. D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
    [CrossRef] [PubMed]
  10. E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Reversed Doppler effect in photonic crystals,” Phys. Rev. Lett. 91(13), 133901 (2003).
    [CrossRef] [PubMed]
  11. E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
    [CrossRef] [PubMed]
  12. E. J. Reed, M. Soljacic, M. Ibanescu, J. D. Joannopoulos, “Reversed and anomalous Doppler effects in photonic crystals and other time-dependent periodic media,” J. Comput. Aided Mater. Design 12, 1–15 (2005).
  13. N. Seddon, T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
    [CrossRef] [PubMed]
  14. F. Biancalana, A. Amann, A. V. Uskov, E. P. O’Reilly, “Dynamics of light propagation in spatiotemporal dielectric structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046607 (2007).
    [CrossRef] [PubMed]
  15. A. B. Shvartsburg, “Optics of nonstationary media,” Phys.- Usp. 48(8), 797–823 (2005).
    [CrossRef]
  16. M. D. Thomson, S. M. Tzanova, H. G. Roskos, “Terahertz frequency upconversion via relativistic Doppler reflection from a photoinduced plasma front in a solid-state medium,” Phys. Rev. B 87(8), 085203 (2013).
    [CrossRef]
  17. X. Liu, D. McNamara, “The use of the FDTD method for electromagnetic analysis in the presence of independently time-varying media,” Int. J. Infrared Millim. Waves 28(9), 759–778 (2007).
    [CrossRef]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  19. J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, M. Jenett, A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
    [CrossRef] [PubMed]
  20. X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K. Jen, R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
    [CrossRef] [PubMed]
  21. X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
    [CrossRef]
  22. X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
    [CrossRef] [PubMed]
  23. H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
    [CrossRef] [PubMed]
  24. M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
    [CrossRef] [PubMed]

2014 (1)

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

2013 (5)

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K. Jen, R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[CrossRef] [PubMed]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[CrossRef]

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

M. D. Thomson, S. M. Tzanova, H. G. Roskos, “Terahertz frequency upconversion via relativistic Doppler reflection from a photoinduced plasma front in a solid-state medium,” Phys. Rev. B 87(8), 085203 (2013).
[CrossRef]

2012 (1)

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

2010 (1)

2007 (3)

X. Liu, D. McNamara, “The use of the FDTD method for electromagnetic analysis in the presence of independently time-varying media,” Int. J. Infrared Millim. Waves 28(9), 759–778 (2007).
[CrossRef]

F. Biancalana, A. Amann, A. V. Uskov, E. P. O’Reilly, “Dynamics of light propagation in spatiotemporal dielectric structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046607 (2007).
[CrossRef] [PubMed]

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

2005 (2)

A. B. Shvartsburg, “Optics of nonstationary media,” Phys.- Usp. 48(8), 797–823 (2005).
[CrossRef]

E. J. Reed, M. Soljacic, M. Ibanescu, J. D. Joannopoulos, “Reversed and anomalous Doppler effects in photonic crystals and other time-dependent periodic media,” J. Comput. Aided Mater. Design 12, 1–15 (2005).

2003 (3)

N. Seddon, T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Reversed Doppler effect in photonic crystals,” Phys. Rev. Lett. 91(13), 133901 (2003).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

1996 (1)

C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C. Joshi, W. B. Mori, “Demonstration of microwave generation from a static field by a relativistic ionization front in a capacitor array,” Phys. Rev. Lett. 77(23), 4764–4767 (1996).
[CrossRef] [PubMed]

1995 (1)

W. B. Mori, T. Katsouleas, J. M. Dawson, C. H. Lai, “Conversion of DC fields in a capacitor array to radiation by a relativistic ionization front,” Phys. Rev. Lett. 74(4), 542–545 (1995).
[CrossRef] [PubMed]

1993 (1)

C. H. Lai, T. C. Katsouleas, W. B. Mori, D. Whittum, “Frequency upshifting by an ionization front in a magnetized plasma,” IEEE Trans. Plasma Sci. 21(1), 45–52 (1993).
[CrossRef]

1978 (1)

M. Lampe, E. Ott, J. H. Walker, “Interaction of electromagnetic waves with a moving ionization front,” Phys. Fluids 21(1), 42–54 (1978).
[CrossRef]

1967 (2)

C. S. Tsai, B. A. Auld, “Wave interactions with moving boundaries,” J. Appl. Phys. 38(5), 2106–2115 (1967).
[CrossRef]

V. I. Semenova, “Reflection of electromagnetic waves from an ionization front,” Radiophys. Quantum Electron. 10(8), 599–604 (1967).
[CrossRef]

1940 (1)

Amann, A.

F. Biancalana, A. Amann, A. V. Uskov, E. P. O’Reilly, “Dynamics of light propagation in spatiotemporal dielectric structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046607 (2007).
[CrossRef] [PubMed]

Auld, B. A.

C. S. Tsai, B. A. Auld, “Wave interactions with moving boundaries,” J. Appl. Phys. 38(5), 2106–2115 (1967).
[CrossRef]

Bearpark, T.

N. Seddon, T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[CrossRef] [PubMed]

Biancalana, F.

F. Biancalana, A. Amann, A. V. Uskov, E. P. O’Reilly, “Dynamics of light propagation in spatiotemporal dielectric structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046607 (2007).
[CrossRef] [PubMed]

Brogle, R.

C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C. Joshi, W. B. Mori, “Demonstration of microwave generation from a static field by a relativistic ionization front in a capacitor array,” Phys. Rev. Lett. 77(23), 4764–4767 (1996).
[CrossRef] [PubMed]

Bulanov, S. V.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Castellanos Muñoz, M.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

Chakravarty, S.

Chen, L.-M.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Chen, R.

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[CrossRef]

Chen, R. T.

Daido, H.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Daito, I.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Dawson, J. M.

W. B. Mori, T. Katsouleas, J. M. Dawson, C. H. Lai, “Conversion of DC fields in a capacitor array to radiation by a relativistic ionization front,” Phys. Rev. Lett. 74(4), 542–545 (1995).
[CrossRef] [PubMed]

Dromey, B.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Dzelzainis, T.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Eich, M.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, M. Jenett, A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010).
[CrossRef] [PubMed]

Englund, D.

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Esirkepov, T. Zh.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Fan, S.

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Foster, P. S.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Fukuda, Y.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Gan, X.

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Gao, Y.

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Habs, D.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Hampe, J.

Hayashi, Y.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Heinz, T. F.

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Homma, T.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Hone, J.

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Hosseini, A.

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K. Jen, R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[CrossRef] [PubMed]

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[CrossRef]

Ibanescu, M.

E. J. Reed, M. Soljacic, M. Ibanescu, J. D. Joannopoulos, “Reversed and anomalous Doppler effects in photonic crystals and other time-dependent periodic media,” J. Comput. Aided Mater. Design 12, 1–15 (2005).

Ives, H. E.

Jacob, A.

Jen, A. K.

Jen, A. K.-Y.

Jenett, M.

Joannopoulos, J. D.

E. J. Reed, M. Soljacic, M. Ibanescu, J. D. Joannopoulos, “Reversed and anomalous Doppler effects in photonic crystals and other time-dependent periodic media,” J. Comput. Aided Mater. Design 12, 1–15 (2005).

E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Reversed Doppler effect in photonic crystals,” Phys. Rev. Lett. 91(13), 133901 (2003).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

Joshi, C.

C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C. Joshi, W. B. Mori, “Demonstration of microwave generation from a static field by a relativistic ionization front in a capacitor array,” Phys. Rev. Lett. 77(23), 4764–4767 (1996).
[CrossRef] [PubMed]

Kando, M.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Kato, Y.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Katsouleas, T.

W. B. Mori, T. Katsouleas, J. M. Dawson, C. H. Lai, “Conversion of DC fields in a capacitor array to radiation by a relativistic ionization front,” Phys. Rev. Lett. 74(4), 542–545 (1995).
[CrossRef] [PubMed]

Katsouleas, T. C.

C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C. Joshi, W. B. Mori, “Demonstration of microwave generation from a static field by a relativistic ionization front in a capacitor array,” Phys. Rev. Lett. 77(23), 4764–4767 (1996).
[CrossRef] [PubMed]

C. H. Lai, T. C. Katsouleas, W. B. Mori, D. Whittum, “Frequency upshifting by an ionization front in a magnetized plasma,” IEEE Trans. Plasma Sci. 21(1), 45–52 (1993).
[CrossRef]

Kiefer, D.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Kimura, T.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Koga, J. K.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Kotaki, H.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Krauss, T. F.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

Lai, C. H.

C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C. Joshi, W. B. Mori, “Demonstration of microwave generation from a static field by a relativistic ionization front in a capacitor array,” Phys. Rev. Lett. 77(23), 4764–4767 (1996).
[CrossRef] [PubMed]

W. B. Mori, T. Katsouleas, J. M. Dawson, C. H. Lai, “Conversion of DC fields in a capacitor array to radiation by a relativistic ionization front,” Phys. Rev. Lett. 74(4), 542–545 (1995).
[CrossRef] [PubMed]

C. H. Lai, T. C. Katsouleas, W. B. Mori, D. Whittum, “Frequency upshifting by an ionization front in a magnetized plasma,” IEEE Trans. Plasma Sci. 21(1), 45–52 (1993).
[CrossRef]

Lampe, M.

M. Lampe, E. Ott, J. H. Walker, “Interaction of electromagnetic waves with a moving ionization front,” Phys. Fluids 21(1), 42–54 (1978).
[CrossRef]

Lewis, C. L. S.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Li, J.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

Li, L.

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Lin, X.

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[CrossRef]

Liou, R.

C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C. Joshi, W. B. Mori, “Demonstration of microwave generation from a static field by a relativistic ionization front in a capacitor array,” Phys. Rev. Lett. 77(23), 4764–4767 (1996).
[CrossRef] [PubMed]

Lipson, M.

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Lira, H.

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Liu, X.

X. Liu, D. McNamara, “The use of the FDTD method for electromagnetic analysis in the presence of independently time-varying media,” Int. J. Infrared Millim. Waves 28(9), 759–778 (2007).
[CrossRef]

Luo, J.

Ma, J.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Mak, K. F.

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Marjoribanks, R. S.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

McNamara, D.

X. Liu, D. McNamara, “The use of the FDTD method for electromagnetic analysis in the presence of independently time-varying media,” Int. J. Infrared Millim. Waves 28(9), 759–778 (2007).
[CrossRef]

Mori, M.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Mori, W. B.

C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C. Joshi, W. B. Mori, “Demonstration of microwave generation from a static field by a relativistic ionization front in a capacitor array,” Phys. Rev. Lett. 77(23), 4764–4767 (1996).
[CrossRef] [PubMed]

W. B. Mori, T. Katsouleas, J. M. Dawson, C. H. Lai, “Conversion of DC fields in a capacitor array to radiation by a relativistic ionization front,” Phys. Rev. Lett. 74(4), 542–545 (1995).
[CrossRef] [PubMed]

C. H. Lai, T. C. Katsouleas, W. B. Mori, D. Whittum, “Frequency upshifting by an ionization front in a magnetized plasma,” IEEE Trans. Plasma Sci. 21(1), 45–52 (1993).
[CrossRef]

Muggli, P.

C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C. Joshi, W. B. Mori, “Demonstration of microwave generation from a static field by a relativistic ionization front in a capacitor array,” Phys. Rev. Lett. 77(23), 4764–4767 (1996).
[CrossRef] [PubMed]

O’Faolain, L.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

O’Reilly, E. P.

F. Biancalana, A. Amann, A. V. Uskov, E. P. O’Reilly, “Dynamics of light propagation in spatiotemporal dielectric structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046607 (2007).
[CrossRef] [PubMed]

Ogura, K.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Ott, E.

M. Lampe, E. Ott, J. H. Walker, “Interaction of electromagnetic waves with a moving ionization front,” Phys. Fluids 21(1), 42–54 (1978).
[CrossRef]

Petrov, A.

Petrov, A. Y.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

Pirozhkov, A. S.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Prorok, S.

Reed, E. J.

E. J. Reed, M. Soljacic, M. Ibanescu, J. D. Joannopoulos, “Reversed and anomalous Doppler effects in photonic crystals and other time-dependent periodic media,” J. Comput. Aided Mater. Design 12, 1–15 (2005).

E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Reversed Doppler effect in photonic crystals,” Phys. Rev. Lett. 91(13), 133901 (2003).
[CrossRef] [PubMed]

Roskos, H. G.

M. D. Thomson, S. M. Tzanova, H. G. Roskos, “Terahertz frequency upconversion via relativistic Doppler reflection from a photoinduced plasma front in a solid-state medium,” Phys. Rev. B 87(8), 085203 (2013).
[CrossRef]

Ruhl, H.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Rykovanov, S. G.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Sagisaka, A.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Schreiber, J.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Seddon, N.

N. Seddon, T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[CrossRef] [PubMed]

Semenova, V. I.

V. I. Semenova, “Reflection of electromagnetic waves from an ionization front,” Radiophys. Quantum Electron. 10(8), 599–604 (1967).
[CrossRef]

Shiue, R.-J.

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Shvartsburg, A. B.

A. B. Shvartsburg, “Optics of nonstationary media,” Phys.- Usp. 48(8), 797–823 (2005).
[CrossRef]

Soljacic, M.

E. J. Reed, M. Soljacic, M. Ibanescu, J. D. Joannopoulos, “Reversed and anomalous Doppler effects in photonic crystals and other time-dependent periodic media,” J. Comput. Aided Mater. Design 12, 1–15 (2005).

E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Reversed Doppler effect in photonic crystals,” Phys. Rev. Lett. 91(13), 133901 (2003).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

Subbaraman, H.

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[CrossRef]

Szep, A.

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Tajima, T.

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

Thomson, M. D.

M. D. Thomson, S. M. Tzanova, H. G. Roskos, “Terahertz frequency upconversion via relativistic Doppler reflection from a photoinduced plasma front in a solid-state medium,” Phys. Rev. B 87(8), 085203 (2013).
[CrossRef]

Tsai, C. S.

C. S. Tsai, B. A. Auld, “Wave interactions with moving boundaries,” J. Appl. Phys. 38(5), 2106–2115 (1967).
[CrossRef]

Tzanova, S. M.

M. D. Thomson, S. M. Tzanova, H. G. Roskos, “Terahertz frequency upconversion via relativistic Doppler reflection from a photoinduced plasma front in a solid-state medium,” Phys. Rev. B 87(8), 085203 (2013).
[CrossRef]

Uskov, A. V.

F. Biancalana, A. Amann, A. V. Uskov, E. P. O’Reilly, “Dynamics of light propagation in spatiotemporal dielectric structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046607 (2007).
[CrossRef] [PubMed]

Walker, D.

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Walker, J. H.

M. Lampe, E. Ott, J. H. Walker, “Interaction of electromagnetic waves with a moving ionization front,” Phys. Fluids 21(1), 42–54 (1978).
[CrossRef]

Whittum, D.

C. H. Lai, T. C. Katsouleas, W. B. Mori, D. Whittum, “Frequency upshifting by an ionization front in a magnetized plasma,” IEEE Trans. Plasma Sci. 21(1), 45–52 (1993).
[CrossRef]

Wülbern, J. H.

Yao, X.

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Yeung, M.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Yu, Z.

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Zepf, M.

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[CrossRef]

X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K. Jen, R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

C. H. Lai, T. C. Katsouleas, W. B. Mori, D. Whittum, “Frequency upshifting by an ionization front in a magnetized plasma,” IEEE Trans. Plasma Sci. 21(1), 45–52 (1993).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

X. Liu, D. McNamara, “The use of the FDTD method for electromagnetic analysis in the presence of independently time-varying media,” Int. J. Infrared Millim. Waves 28(9), 759–778 (2007).
[CrossRef]

J. Appl. Phys. (1)

C. S. Tsai, B. A. Auld, “Wave interactions with moving boundaries,” J. Appl. Phys. 38(5), 2106–2115 (1967).
[CrossRef]

J. Comput. Aided Mater. Design (1)

E. J. Reed, M. Soljacic, M. Ibanescu, J. D. Joannopoulos, “Reversed and anomalous Doppler effects in photonic crystals and other time-dependent periodic media,” J. Comput. Aided Mater. Design 12, 1–15 (2005).

J. Opt. Soc. Am. (1)

Nano Lett. (1)

X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013).
[CrossRef] [PubMed]

Nat. Commun. (1)

D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Fluids (1)

M. Lampe, E. Ott, J. H. Walker, “Interaction of electromagnetic waves with a moving ionization front,” Phys. Fluids 21(1), 42–54 (1978).
[CrossRef]

Phys. Rev. B (1)

M. D. Thomson, S. M. Tzanova, H. G. Roskos, “Terahertz frequency upconversion via relativistic Doppler reflection from a photoinduced plasma front in a solid-state medium,” Phys. Rev. B 87(8), 085203 (2013).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

F. Biancalana, A. Amann, A. V. Uskov, E. P. O’Reilly, “Dynamics of light propagation in spatiotemporal dielectric structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046607 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (7)

M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Reversed Doppler effect in photonic crystals,” Phys. Rev. Lett. 91(13), 133901 (2003).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

W. B. Mori, T. Katsouleas, J. M. Dawson, C. H. Lai, “Conversion of DC fields in a capacitor array to radiation by a relativistic ionization front,” Phys. Rev. Lett. 74(4), 542–545 (1995).
[CrossRef] [PubMed]

C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C. Joshi, W. B. Mori, “Demonstration of microwave generation from a static field by a relativistic ionization front in a capacitor array,” Phys. Rev. Lett. 77(23), 4764–4767 (1996).
[CrossRef] [PubMed]

H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

Phys.- Usp. (1)

A. B. Shvartsburg, “Optics of nonstationary media,” Phys.- Usp. 48(8), 797–823 (2005).
[CrossRef]

Radiophys. Quantum Electron. (1)

V. I. Semenova, “Reflection of electromagnetic waves from an ionization front,” Radiophys. Quantum Electron. 10(8), 599–604 (1967).
[CrossRef]

Science (1)

N. Seddon, T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The front of photonic crystal is moving against the propagation of the incident pulse. (a) Dispersion relation for the surrounding homogeneous dielectric medium where both the incident (red line) and reflected (green line) waves propagate. The red dot corresponds to the incident wave and the green dots to the reflected waves. The gray lines correspond to phase continuity condition with slope v f =0.1 c 0 which appears multiple due to the series of allowed photonic crystal reciprocal lattice vectors. (b) Frequency dependent amplitude of the reflected pulse for a moving sharp front with γ=20 μm 1 . The frequencies of the reflected wave correspond to the points of intersections between the dispersion relation of the surrounding medium and the phase continuity lines. (c) Frequency dependent amplitude of the reflected wave for a moving smooth front with a width of γ=1 μm 1 . Due to the adiabatic transition, only a single frequency band is observed.

Fig. 2
Fig. 2

Schematic representation of spectral broadening when the front is moving against the propagation of the incident wave. The input signal (in red) has a narrow frequency range which lies inside the band gap of the photonic crystal. The reflected wave shows an altered frequency range (in green).

Fig. 3
Fig. 3

Schematic representation of spectral compression when the direction of the front motion coincides with the propagation direction of the incident wave. The input signal (in red) has a wide frequency range which lies inside the photonic band gap. The reflected wave has a narrowed frequency range (in green). The dotted lines depict the adiabatic change of the photonic bands in case of a smooth moving front.

Fig. 4
Fig. 4

(a) FDTD simulation of frequency range broadening (green) with respect to the incident spectral width (red). The front velocity is equal to 0.1 c 0 . (b) FDTD simulation of frequency range compression (green) with respect to the incident spectral width (red). The front velocity is equal to 0.1 c 0 .

Fig. 5
Fig. 5

Relations between electric field amplitudes of reflected and incident waves for different velocities of the front. Solid line represents theoretical relation of Eq. (4). Results obtained using conventional FDTD algorithm are marked with squares, results given by modified FDTD algorithm are depicted with circles. For these calculations the refractive index is varied from 3.5 to 4.5 with a sharp front.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

× H = d D dt =ε d E dt + E dε dt
ω re = ω i +( k re k i ) v f
Δω Δk = ω re ω i k re k i = v f
ε( x,t )= ε i +Δε( x )( 1 1 1+exp( γ( x v f t ) ) )
E re E i = 1+ v f / v re 1 v f / v re R

Metrics