Abstract

Inspection tools for nano-particle contamination on a planar substrate surface is a critical problem in micro-electronics. The present solutions are either expensive and slow or inexpensive and fast but have low sensitivity because of limitations due to diffraction. Most of them are also substrate specific. In this article we report how Coherent Fourier Scatterometry is used for detection of particles smaller than λ/4. Merits of the technique, especially, the procedures to improve SNR, its flexibility and its robustness on rough surfaces are discussed with simulated and experimental results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, H. P. Urbach, “Performance analysis of coherent optical scatterometry,” Appl. Phys. B 105(4), 775–781 (2006).
    [CrossRef]
  2. V. F. Paz, S. Peterhnsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1(36), 1–7 (2012).
  3. A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).
  4. J. Berger, Detection of Particles on Clean Surfaces (Springer, 1989).
  5. U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
    [CrossRef]
  6. V. Bakshi, ed., EUV Lithography (SPIE Press, 2009), pp.360–362.
  7. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
    [CrossRef] [PubMed]
  8. H. Oerley, “Metrology systems for quality and process control of coatings on glass and plastic films,” in Proceedings of Technical Session 4, 9th International Conference on Coatings on Glass and Plastics 2012, Breda, Netherlands.
  9. J. F. Aguilar, E. R. Méndez, “On the limitations of the confocal scanning optical microscope as a profilometer,” J. Mod. Opt. 42(9), 1785–1794 (1995).
    [CrossRef]
  10. H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
    [CrossRef]
  11. A. Okamoto, H. Kuniyasu, H. Takeshi, “Detection of 3040-nm particles on bulk-silicon and SOI wafers using deep UV laser scattering,” IEEE Trans. Semicond. Manuf. 19(4), 372–380 (2006).
    [CrossRef]
  12. T. A. Germer, “Multidetector hemispherical polarized optical scattering instrument,” Proc SPIE 3784, 304–313 (1999).
    [CrossRef]
  13. A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
    [CrossRef]
  14. T. A. Germer, “Angular dependence and polarization of out-of-plane optical scattering from particulate contamination, subsurface defects, and surface microroughness,” Appl. Opt. 36, 8798–8805 (1997).
    [CrossRef]
  15. J. C. Stover, V. I. Ivakhnenko, Y. Eremin, “The use of light scatter signals to identify particle material”, Proc. SPIE 4449, 131–139 (2001).
    [CrossRef]
  16. N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012);
    [CrossRef]
  17. A. C. Assafrão, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, “Near-field self-induced hollow spot through localized heating of polycarbonate/ZnS stack layer,” Appl. Opt. 51(31), 7684–7689 (2012).
    [CrossRef]
  18. B. E. Roberds, S. N. Farrens, “An atomic force microscopy study on the roughness of silicon wafers correlated with direct wafer bonding,” J. Electrochem. Soc. 143(7), 2365–2371 (1996).
    [CrossRef]
  19. C. Teichert, J. F. MacKay, D. E. Savage, M. G. Lagally, “Comparison of surface roughness of polished silicon wafers measured by light scattering topography, soft-x-ray scattering, and atomic-force microscopy,” Appl. Phys. Lett. 66(18), 2346–2348 (1995).
    [CrossRef]
  20. S. Harkema, S. Mennema, M. Barink, H Rooms, J. S. Wilson, T. van Moland, D. Bollen, “Large area ITO-free flexible white OLEDs with orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009).
    [CrossRef]
  21. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8(3), 483–489 (1991).
    [CrossRef]
  22. B. R. Johnson, “Calculation of light scattering from a spherical particle on a surface by the multipole expansion method,” J. Opt. Soc. Am. A 13(2), 326–337 (1996).
    [CrossRef]
  23. R. Schmehl, B. M. Nebeker, E. D. Hirleman, “Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique,” J. Opt. Soc. Am. A 14(11), 3026–3036 (1997).
    [CrossRef]
  24. X. Wei, A. J. H. Wachters, H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A 24(3), 866–881 (2007).
    [CrossRef]
  25. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
    [CrossRef]
  26. O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
    [CrossRef] [PubMed]
  27. T. Herffurth, S. Schrder, M. Trost, A. Duparr, A. Tnnermann, “Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor,” Appl. Opt. 52(14), 3279–3287 (2013).
    [CrossRef] [PubMed]
  28. C. Amra, ”Light scattering from multilayer optics. II. Application to experiment,” J. Opt. Soc. Am. A 11, 211–226 (1994).
    [CrossRef]
  29. Y. A. Eremin, J. C. Stover, N. V. Orlov, “Modeling scatter from silicon wafers features based on discrete sources method,” Opt. Eng. 38, 1296–1304 (1999).
    [CrossRef]

2013 (1)

2012 (4)

A. C. Assafrão, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, “Near-field self-induced hollow spot through localized heating of polycarbonate/ZnS stack layer,” Appl. Opt. 51(31), 7684–7689 (2012).
[CrossRef]

V. F. Paz, S. Peterhnsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1(36), 1–7 (2012).

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012);
[CrossRef]

2010 (1)

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[CrossRef] [PubMed]

2009 (1)

S. Harkema, S. Mennema, M. Barink, H Rooms, J. S. Wilson, T. van Moland, D. Bollen, “Large area ITO-free flexible white OLEDs with orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009).
[CrossRef]

2008 (1)

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

2007 (3)

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[CrossRef]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

X. Wei, A. J. H. Wachters, H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A 24(3), 866–881 (2007).
[CrossRef]

2006 (2)

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, H. P. Urbach, “Performance analysis of coherent optical scatterometry,” Appl. Phys. B 105(4), 775–781 (2006).
[CrossRef]

A. Okamoto, H. Kuniyasu, H. Takeshi, “Detection of 3040-nm particles on bulk-silicon and SOI wafers using deep UV laser scattering,” IEEE Trans. Semicond. Manuf. 19(4), 372–380 (2006).
[CrossRef]

2001 (1)

J. C. Stover, V. I. Ivakhnenko, Y. Eremin, “The use of light scatter signals to identify particle material”, Proc. SPIE 4449, 131–139 (2001).
[CrossRef]

1999 (2)

Y. A. Eremin, J. C. Stover, N. V. Orlov, “Modeling scatter from silicon wafers features based on discrete sources method,” Opt. Eng. 38, 1296–1304 (1999).
[CrossRef]

T. A. Germer, “Multidetector hemispherical polarized optical scattering instrument,” Proc SPIE 3784, 304–313 (1999).
[CrossRef]

1997 (3)

1996 (2)

B. R. Johnson, “Calculation of light scattering from a spherical particle on a surface by the multipole expansion method,” J. Opt. Soc. Am. A 13(2), 326–337 (1996).
[CrossRef]

B. E. Roberds, S. N. Farrens, “An atomic force microscopy study on the roughness of silicon wafers correlated with direct wafer bonding,” J. Electrochem. Soc. 143(7), 2365–2371 (1996).
[CrossRef]

1995 (2)

C. Teichert, J. F. MacKay, D. E. Savage, M. G. Lagally, “Comparison of surface roughness of polished silicon wafers measured by light scattering topography, soft-x-ray scattering, and atomic-force microscopy,” Appl. Phys. Lett. 66(18), 2346–2348 (1995).
[CrossRef]

J. F. Aguilar, E. R. Méndez, “On the limitations of the confocal scanning optical microscope as a profilometer,” J. Mod. Opt. 42(9), 1785–1794 (1995).
[CrossRef]

1994 (1)

1991 (1)

Aguilar, J. F.

J. F. Aguilar, E. R. Méndez, “On the limitations of the confocal scanning optical microscope as a profilometer,” J. Mod. Opt. 42(9), 1785–1794 (1995).
[CrossRef]

Amra, C.

Assafrão, A. C.

Barink, M.

S. Harkema, S. Mennema, M. Barink, H Rooms, J. S. Wilson, T. van Moland, D. Bollen, “Large area ITO-free flexible white OLEDs with orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009).
[CrossRef]

Bender, M.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Berger, J.

J. Berger, Detection of Particles on Clean Surfaces (Springer, 1989).

Blake, P.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[CrossRef]

Bleeker, A. J.

A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).

Bliokh, K. Y.

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[CrossRef] [PubMed]

Bollen, D.

S. Harkema, S. Mennema, M. Barink, H Rooms, J. S. Wilson, T. van Moland, D. Bollen, “Large area ITO-free flexible white OLEDs with orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009).
[CrossRef]

Booth, T. J.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[CrossRef]

Bullis, W. M.

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

Cai, X.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Cantrell, R.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Castro Neto, A. H.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[CrossRef]

Chen, A.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Chen, H.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Chen, S.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Clifford, C. H.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Coene, W.

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012);
[CrossRef]

Coene, W. M. J.

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, H. P. Urbach, “Performance analysis of coherent optical scatterometry,” Appl. Phys. B 105(4), 775–781 (2006).
[CrossRef]

Dainty, C.

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[CrossRef] [PubMed]

den Boef, A. J. M.

A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).

Duparr, A.

Dusa, M.

A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).

El Gawhary, O.

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012);
[CrossRef]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, H. P. Urbach, “Performance analysis of coherent optical scatterometry,” Appl. Phys. B 105(4), 775–781 (2006).
[CrossRef]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

Eremin, Y.

J. C. Stover, V. I. Ivakhnenko, Y. Eremin, “The use of light scatter signals to identify particle material”, Proc. SPIE 4449, 131–139 (2001).
[CrossRef]

Eremin, Y. A.

Y. A. Eremin, J. C. Stover, N. V. Orlov, “Modeling scatter from silicon wafers features based on discrete sources method,” Opt. Eng. 38, 1296–1304 (1999).
[CrossRef]

Farrens, S. N.

B. E. Roberds, S. N. Farrens, “An atomic force microscopy study on the roughness of silicon wafers correlated with direct wafer bonding,” J. Electrochem. Soc. 143(7), 2365–2371 (1996).
[CrossRef]

Frenner, K.

V. F. Paz, S. Peterhnsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1(36), 1–7 (2012).

Geim, A. K.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[CrossRef]

Germer, T. A.

Ghaskadavi, R.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Gildersleeve, K.

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

Goodall, R. K.

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

Grouwstra, C. D.

A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).

Harkema, S.

S. Harkema, S. Mennema, M. Barink, H Rooms, J. S. Wilson, T. van Moland, D. Bollen, “Large area ITO-free flexible white OLEDs with orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009).
[CrossRef]

Herffurth, T.

Heumann, J.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Hill, E. W.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[CrossRef]

Hirleman, D.

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

Hirleman, E. D.

Hu, D.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Huang, V.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Huff, H. R.

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

Ivakhnenko, V. I.

J. C. Stover, V. I. Ivakhnenko, Y. Eremin, “The use of light scatter signals to identify particle material”, Proc. SPIE 4449, 131–139 (2001).
[CrossRef]

Jiang, D.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[CrossRef]

Jiang, F.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Johnson, B. R.

Kiers, A. G. M.

A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).

Kumar, N.

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012);
[CrossRef]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, H. P. Urbach, “Performance analysis of coherent optical scatterometry,” Appl. Phys. B 105(4), 775–781 (2006).
[CrossRef]

Kuniyasu, H.

A. Okamoto, H. Kuniyasu, H. Takeshi, “Detection of 3040-nm particles on bulk-silicon and SOI wafers using deep UV laser scattering,” IEEE Trans. Semicond. Manuf. 19(4), 372–380 (2006).
[CrossRef]

Kutchoukov, V. G.

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012);
[CrossRef]

Lagally, M. G.

C. Teichert, J. F. MacKay, D. E. Savage, M. G. Lagally, “Comparison of surface roughness of polished silicon wafers measured by light scattering topography, soft-x-ray scattering, and atomic-force microscopy,” Appl. Phys. Lett. 66(18), 2346–2348 (1995).
[CrossRef]

Lara, D.

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[CrossRef] [PubMed]

Li, M.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

LiCausi, N.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Liu, B. Y. H.

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

Luehrmann, P. F.

A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).

MacKay, J. F.

C. Teichert, J. F. MacKay, D. E. Savage, M. G. Lagally, “Comparison of surface roughness of polished silicon wafers measured by light scattering topography, soft-x-ray scattering, and atomic-force microscopy,” Appl. Phys. Lett. 66(18), 2346–2348 (1995).
[CrossRef]

Mahajan, U.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Mangat, P.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Méndez, E. R.

J. F. Aguilar, E. R. Méndez, “On the limitations of the confocal scanning optical microscope as a profilometer,” J. Mod. Opt. 42(9), 1785–1794 (1995).
[CrossRef]

Mennema, S.

S. Harkema, S. Mennema, M. Barink, H Rooms, J. S. Wilson, T. van Moland, D. Bollen, “Large area ITO-free flexible white OLEDs with orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009).
[CrossRef]

Mohn, E.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Moses, R.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Nebeker, B. M.

Nesladek, P.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Novoselov, K. S.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[CrossRef]

Oerley, H.

H. Oerley, “Metrology systems for quality and process control of coatings on glass and plastic films,” in Proceedings of Technical Session 4, 9th International Conference on Coatings on Glass and Plastics 2012, Breda, Netherlands.

Okamoto, A.

A. Okamoto, H. Kuniyasu, H. Takeshi, “Detection of 3040-nm particles on bulk-silicon and SOI wafers using deep UV laser scattering,” IEEE Trans. Semicond. Manuf. 19(4), 372–380 (2006).
[CrossRef]

Okoroanyanwu, U.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Orlov, N. V.

Y. A. Eremin, J. C. Stover, N. V. Orlov, “Modeling scatter from silicon wafers features based on discrete sources method,” Opt. Eng. 38, 1296–1304 (1999).
[CrossRef]

Osten, W.

V. F. Paz, S. Peterhnsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1(36), 1–7 (2012).

Ostrovskaya, E. A.

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[CrossRef] [PubMed]

Paz, V. F.

V. F. Paz, S. Peterhnsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1(36), 1–7 (2012).

Pellemans, H. P. M.

A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).

Pereira, S. F.

A. C. Assafrão, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, “Near-field self-induced hollow spot through localized heating of polycarbonate/ZnS stack layer,” Appl. Opt. 51(31), 7684–7689 (2012).
[CrossRef]

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012);
[CrossRef]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, H. P. Urbach, “Performance analysis of coherent optical scatterometry,” Appl. Phys. B 105(4), 775–781 (2006).
[CrossRef]

Peterhnsel, S.

V. F. Paz, S. Peterhnsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1(36), 1–7 (2012).

Roberds, B. E.

B. E. Roberds, S. N. Farrens, “An atomic force microscopy study on the roughness of silicon wafers correlated with direct wafer bonding,” J. Electrochem. Soc. 143(7), 2365–2371 (1996).
[CrossRef]

Rodríguez-Herrera, O. G.

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[CrossRef] [PubMed]

Rolff, H.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Rooms, H

S. Harkema, S. Mennema, M. Barink, H Rooms, J. S. Wilson, T. van Moland, D. Bollen, “Large area ITO-free flexible white OLEDs with orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009).
[CrossRef]

Roy, S.

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012);
[CrossRef]

Saito, J.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Savage, D. E.

C. Teichert, J. F. MacKay, D. E. Savage, M. G. Lagally, “Comparison of surface roughness of polished silicon wafers measured by light scattering topography, soft-x-ray scattering, and atomic-force microscopy,” Appl. Phys. Lett. 66(18), 2346–2348 (1995).
[CrossRef]

Schedel, T.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Scheer, B. W.

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

Schefske, J.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Schmehl, R.

Schmidt, N.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Schrder, S.

Shen, W.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Stover, J.

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

Stover, J. C.

J. C. Stover, V. I. Ivakhnenko, Y. Eremin, “The use of light scatter signals to identify particle material”, Proc. SPIE 4449, 131–139 (2001).
[CrossRef]

Y. A. Eremin, J. C. Stover, N. V. Orlov, “Modeling scatter from silicon wafers features based on discrete sources method,” Opt. Eng. 38, 1296–1304 (1999).
[CrossRef]

Sun, K.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Takeshi, H.

A. Okamoto, H. Kuniyasu, H. Takeshi, “Detection of 3040-nm particles on bulk-silicon and SOI wafers using deep UV laser scattering,” IEEE Trans. Semicond. Manuf. 19(4), 372–380 (2006).
[CrossRef]

Taylor, W.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Teichert, C.

C. Teichert, J. F. MacKay, D. E. Savage, M. G. Lagally, “Comparison of surface roughness of polished silicon wafers measured by light scattering topography, soft-x-ray scattering, and atomic-force microscopy,” Appl. Phys. Lett. 66(18), 2346–2348 (1995).
[CrossRef]

Tnnermann, A.

Trost, M.

Tsai, C. J.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Urbach, H. P.

A. C. Assafrão, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, “Near-field self-induced hollow spot through localized heating of polycarbonate/ZnS stack layer,” Appl. Opt. 51(31), 7684–7689 (2012).
[CrossRef]

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012);
[CrossRef]

X. Wei, A. J. H. Wachters, H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A 24(3), 866–881 (2007).
[CrossRef]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, H. P. Urbach, “Performance analysis of coherent optical scatterometry,” Appl. Phys. B 105(4), 775–781 (2006).
[CrossRef]

van der Schaar, M.

A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).

van Dommenlen, Y. J. L. M.

A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).

van Kraaij, M. G. G. M.

A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).

van Moland, T.

S. Harkema, S. Mennema, M. Barink, H Rooms, J. S. Wilson, T. van Moland, D. Bollen, “Large area ITO-free flexible white OLEDs with orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009).
[CrossRef]

Videen, G.

Wachters, A. J. H.

Warner, T.

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

Wei, X.

Williams, E.

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

Wilson, J. S.

S. Harkema, S. Mennema, M. Barink, H Rooms, J. S. Wilson, T. van Moland, D. Bollen, “Large area ITO-free flexible white OLEDs with orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009).
[CrossRef]

Woo, K.

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

Wood, O.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Wu, K.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Yang, R.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[CrossRef]

Zhang, H.

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

Zhu, X.

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, H. P. Urbach, “Performance analysis of coherent optical scatterometry,” Appl. Phys. B 105(4), 775–781 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

C. Teichert, J. F. MacKay, D. E. Savage, M. G. Lagally, “Comparison of surface roughness of polished silicon wafers measured by light scattering topography, soft-x-ray scattering, and atomic-force microscopy,” Appl. Phys. Lett. 66(18), 2346–2348 (1995).
[CrossRef]

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007).
[CrossRef]

IEEE Trans. Semicond. Manuf. (1)

A. Okamoto, H. Kuniyasu, H. Takeshi, “Detection of 3040-nm particles on bulk-silicon and SOI wafers using deep UV laser scattering,” IEEE Trans. Semicond. Manuf. 19(4), 372–380 (2006).
[CrossRef]

J. Electrochem. Soc. (2)

H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997).
[CrossRef]

B. E. Roberds, S. N. Farrens, “An atomic force microscopy study on the roughness of silicon wafers correlated with direct wafer bonding,” J. Electrochem. Soc. 143(7), 2365–2371 (1996).
[CrossRef]

J. Mod. Opt. (1)

J. F. Aguilar, E. R. Méndez, “On the limitations of the confocal scanning optical microscope as a profilometer,” J. Mod. Opt. 42(9), 1785–1794 (1995).
[CrossRef]

J. Opt. Soc. Am. A (5)

Light Sci. Appl. (1)

V. F. Paz, S. Peterhnsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1(36), 1–7 (2012).

Opt. Eng. (1)

Y. A. Eremin, J. C. Stover, N. V. Orlov, “Modeling scatter from silicon wafers features based on discrete sources method,” Opt. Eng. 38, 1296–1304 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[CrossRef] [PubMed]

Proc SPIE (1)

T. A. Germer, “Multidetector hemispherical polarized optical scattering instrument,” Proc SPIE 3784, 304–313 (1999).
[CrossRef]

Proc. SPIE (5)

A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008).
[CrossRef]

S. Harkema, S. Mennema, M. Barink, H Rooms, J. S. Wilson, T. van Moland, D. Bollen, “Large area ITO-free flexible white OLEDs with orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009).
[CrossRef]

J. C. Stover, V. I. Ivakhnenko, Y. Eremin, “The use of light scatter signals to identify particle material”, Proc. SPIE 4449, 131–139 (2001).
[CrossRef]

N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012);
[CrossRef]

U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012).
[CrossRef]

Science (1)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

Other (4)

H. Oerley, “Metrology systems for quality and process control of coatings on glass and plastic films,” in Proceedings of Technical Session 4, 9th International Conference on Coatings on Glass and Plastics 2012, Breda, Netherlands.

V. Bakshi, ed., EUV Lithography (SPIE Press, 2009), pp.360–362.

A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).

J. Berger, Detection of Particles on Clean Surfaces (Springer, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The standard scattering based surface scanning techniques employing a focused laser beam at large angle of incidence is shown in (a). Generally, in these ‘classical’ goniometric scatterometers, the specularly reflected and scattered intensities are respectively measured with a fixed and a movable detector. Many detector positions are necessary if it is required to measure the scattered intensity as a function of angle, which leads to slower operation. More complex systems with more measurements can distinguish between scattering from a contamination or surface roughness [14] or can determine the contaminating material [15]. The illumination of CFS along with the co-ordinate system to be used in the article are shown in (b). CFS requires a single shot measurement other than procedures employing angular laser-scanning techniques. The optical axis (z) is positive downwards with the origin at the geometric focus of the objective.

Fig. 2
Fig. 2

The experimental setup of CFS. Outline is described in detail in the text. The measurements are performed in reflection.

Fig. 3
Fig. 3

The AFM scan of the bare OLED sample. Water ingress into the pinholes in the cathode caused by the presence of particles, leads to an oxidation of the Al at the cathode-LEP interface. At these locations the electron injection is blocked, resulting in a local absence of emission, visible as a so-called black spot, or pinhole (see also Fig. 8(a)). (a) For an area of roughly the spot size, the rms roughness is about 9.5 nm. Due to numerous defects, the rms roughness rapidly increases for larger areas. In (b) it is about 30 nm for an area of 20 μm square. This typically large roughness is probably due to degradation of cathode, where due to gas formation underneath the cathode when water reacts with aluminum, roughness increases.

Fig. 4
Fig. 4

The numerical modeling of the problem. The simulation scheme is a cube of 1 μm enclosed by a perfect matched layer boundary. All numbers are in μm. Co-ordinate system is in accordance with Fig. 1(b). The co-ordinates of two diagonally opposite point are given. The air-silicon interface, containing the geometric focus, lies at z = 0 where the z axis (not shown) is the instrument’s optical axis, with positive z downwards. The incident wave is a beam focused at origin with the numerical aperture of 0.9, divided in to 104 incident angles. The mesh size was chosen in such way that the first zero in the focused electric field components fit completely inside the computational domain, for the numerical aperture considered. Also, adaptive meshing was employed to assign higher number of points in the central region of the computation domain.

Fig. 5
Fig. 5

The simulated and measured normalized power for particles with varying diameters. The particles are inside the focused spot. Any deviation from unity indicates that the particle can be detected.

Fig. 6
Fig. 6

Comparison of simulated and measured far field distribution of a single 100nm particle under the focused spot, using the parallel LP-LP mode. The transverse axis used in the far field is parallel to the one defined in Fig. 1(b). (a) The simulation result is shown. In (b) Experimental data for reference and (c) experimental data in presence of a particle is shown after binning. (d) is generated by pixel by pixel normalizing (c) by reference (b), to reduce the central bright spot. The presence of large power along the edges of the pupil in the direction of polarization is the main indication for presence of particle. The symmetry indicates the center of the particle to be almost on optical axis.

Fig. 7
Fig. 7

Detection of particle contamination with CFS. (a) The scheme of the raster scanning method employed. Each scan line (blue) of 2 μm takes 20 seconds and generates 200 frames. Reinitialization to next line takes 1 sec, with backward movement (green) and a downward cruise (red), generating 10 frames that are not captured by the camera. The total scan area, for this case, is 2 μm by 0.4 μm. The scheme stays identical for larger particles but the shift between two lines is increased, resulting in larger scan area. (b) Normalized power against shift from initial scan position (scan distance, in μm) for particles of 400 nm (red), 200 nm (green) and 100 nm (blue). Signals with large SNR are generated by the larger particles. The bottom of the dip coincides with the center of the nano-sphere. Those frames were considered to generate the experimental data points in Fig. 5.

Fig. 8
Fig. 8

Detection signal of 100nm PSL sphere with NA till which the pupil is blocked from the center. (a) The improvement of the signal for 100 nm particle with different amount of blocking in the pupil is shown for parallel LP-LP scheme. (b) The comparison of the theoretical and practical data for parallel LP-LP. The optimum amount of blocking is found to about NA = 0.5 for this case. (c) shows the results for crossed LP-LP scheme. The blocking improves the SNR monotonically for this case. (d) comparison between simulation and experiment for case (c).

Fig. 9
Fig. 9

Application of QD approximation on the data obtained for 100 nm particle. (a) For the best scan line at y = 100nm, the normalized power analysis (similar to Fig. 7) is shown in blue, while different cases of quadrant detector approximation are shown in green. The schematic QD is shown in top left. The scale for QD signal is 20 times the signal from normalized power analysis. The fact that QDL-R is more sensitive than QDT-B indicates that when the scanning was done, the particle was approached by moving from left to right. (b) The decrease of SNR as the spot moves away from the particle in Y-direction. The blue line is the scan at y = 100nm, green at y = 300nm and red at y = 400nm, relative to scan origin. It may be seen that the particle can be detected at a distance of about 200 nm away on each side of the particle. Assuming the scan line with the maximum SNR is closest to the particle center, approximate location of the particle in the scan area, along with the area over which it can be detected (dashed line), is shown on the bottom left. In this figure, the axis orientation is interchanged for drawing convenience. All co-ordinates in μm. More precise results can be obtained with a finer scanning and a better reference.

Fig. 10
Fig. 10

Difference of defect sizes as detected by CFS. In (a) the image of the sample size using the white light source is shown with two pinhole defects of different sizes. The bigger boxed in red, smaller boxed in green. The sizes of the smaller one is approximately 200–220 nm, while the bigger one is about 400–420 nm. The signal after they were scanned is shown in (b), using the same scanning parameters. The difference in sizes is evident from the scanning distances for which the normalized power is smaller than the reference.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ( x , y , z ) = 1 if z 0 and x 2 + y 2 + ( z D / 2 ) 2 > D / 2 = ( 1.58 ) 2 if z 0 and x 2 + y 2 + ( z D / 2 ) 2 D / 2 = ( 5.42 + 0.33 j ) 2 if z > 0
Normalized power = p = 1 M q = 1 M I p , q p = 1 M q = 1 M I p , q ref
QDL R = p = 1 M / 2 q = 1 M I p , q p = M / 2 + 1 M q = 1 M I p , q max | p = 1 M / 2 q = 1 M I p , q p = M / 2 + 1 M q = 1 M I p , q | .

Metrics