Abstract

In this paper we demonstrate multilayer fabrication of plasmonic gold nanorod arrays using electron-beam lithography (EBL), and show that this structure could be used for multilayered optical storage media capable of continuous-wave (cw) laser readout. The gold nanorods fabricated using the EBL method are aligned perfectly and homogeneous in size and shape, allowing the polarization response of surface plasmon resonance (SPR) to be observed through ensemble array. This property in turn permits polarization detuned SPR readout possible and other manipulations such as progressively twisted arrays through the multilayers to make cw readout possible through deeper layers without too much extinction loss. The layered gold nanorod arrays are separated by thick spacer layer to enable the optical resolving of individual layers. Using this method, we demonstrated four-fold reduction in extinction loss for cw readout in three-layer structure. The current technique of multilayer fabrication and readout can be useful in 3-dimensional fabrication of plasmonic circuits and structures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  2. J. W. M. Chon, C. Bullen, P. Zijlstra, M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
    [CrossRef]
  3. P. Zijlstra, J. W. M. Chon, M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
    [CrossRef] [PubMed]
  4. A. B. Taylor, J. Kim, J. W. M. Chon, “Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout,” Opt. Express 20(5), 5069–5081 (2012).
    [CrossRef] [PubMed]
  5. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S. H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17(16), 14001–14014 (2009).
    [CrossRef] [PubMed]
  6. H. Ditlbacher, B. Lamprecht, A. Leitner, F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25(8), 563–565 (2000).
    [CrossRef] [PubMed]
  7. K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical properties of nanoengineered gold blocks,” Opt. Lett. 30(16), 2158–2160 (2005).
    [CrossRef] [PubMed]
  8. J. Wang, Y. T. Chen, X. Chen, J. M. Hao, M. Yan, M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19(15), 14726–14734 (2011).
    [CrossRef] [PubMed]
  9. I. Ichimura, K. Saito, T. Yamasaki, K. Osato, “Proposal for a multilayer read-only-memory optical disk structure,” Appl. Opt. 45(8), 1794–1803 (2006).
    [CrossRef] [PubMed]
  10. A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, T. Iida, “Multilayer 500 Gbyte optical disk,” Jpn. J. Appl. Phys. 48, 3S1 (2009).
    [CrossRef] [PubMed]
  11. D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).
  12. C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
    [CrossRef] [PubMed]
  13. R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Ann. Phys. 342(5), 881–900 (1912).
    [CrossRef]
  14. S. W. Prescott, P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
    [CrossRef]

2012

A. B. Taylor, J. Kim, J. W. M. Chon, “Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout,” Opt. Express 20(5), 5069–5081 (2012).
[CrossRef] [PubMed]

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).

2011

2009

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, T. Iida, “Multilayer 500 Gbyte optical disk,” Jpn. J. Appl. Phys. 48, 3S1 (2009).
[CrossRef] [PubMed]

M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S. H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17(16), 14001–14014 (2009).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

2007

J. W. M. Chon, C. Bullen, P. Zijlstra, M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

P. Zijlstra, J. W. M. Chon, M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

2006

I. Ichimura, K. Saito, T. Yamasaki, K. Osato, “Proposal for a multilayer read-only-memory optical disk structure,” Appl. Opt. 45(8), 1794–1803 (2006).
[CrossRef] [PubMed]

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

S. W. Prescott, P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

2005

2000

1912

R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Ann. Phys. 342(5), 881–900 (1912).
[CrossRef]

Aussenegg, F. R.

Becker, M.

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).

Bullen, C.

J. W. M. Chon, C. Bullen, P. Zijlstra, M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

Chen, X.

Chen, Y. T.

Chon, J. W. M.

A. B. Taylor, J. Kim, J. W. M. Chon, “Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout,” Opt. Express 20(5), 5069–5081 (2012).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

P. Zijlstra, J. W. M. Chon, M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

Ditlbacher, H.

Dorfmüller, J.

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).

Dregely, D.

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).

Gans, R.

R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Ann. Phys. 342(5), 881–900 (1912).
[CrossRef]

Giessen, H.

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).

Gomez, D.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Gu, M.

P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

P. Zijlstra, J. W. M. Chon, M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

Hao, J. M.

Hartland, G. V.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Hentschel, M.

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).

Higuchi, T.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, T. Iida, “Multilayer 500 Gbyte optical disk,” Jpn. J. Appl. Phys. 48, 3S1 (2009).
[CrossRef] [PubMed]

Ichimura, I.

Iida, T.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, T. Iida, “Multilayer 500 Gbyte optical disk,” Jpn. J. Appl. Phys. 48, 3S1 (2009).
[CrossRef] [PubMed]

Im, H.

Jones, R. J.

Juodkazis, S.

Kim, J.

Kobyakov, A.

Lamprecht, B.

Leitner, A.

Lesuffleur, A.

Lindfors, K.

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).

Lindquist, N. C.

Lippitz, M.

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).

Mansuripur, M.

Misawa, H.

Mitsumori, A.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, T. Iida, “Multilayer 500 Gbyte optical disk,” Jpn. J. Appl. Phys. 48, 3S1 (2009).
[CrossRef] [PubMed]

Mizeikis, V.

Moloney, J. V.

Mulvaney, P.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

S. W. Prescott, P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

Novo, C.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Ogasawara, M.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, T. Iida, “Multilayer 500 Gbyte optical disk,” Jpn. J. Appl. Phys. 48, 3S1 (2009).
[CrossRef] [PubMed]

Oh, S. H.

Osato, K.

Perez-Juste, J.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Petrova, H.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Prescott, S. W.

S. W. Prescott, P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

Qiu, M.

Reismann, M.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Saito, K.

Sasaki, K.

Tanaka, S.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, T. Iida, “Multilayer 500 Gbyte optical disk,” Jpn. J. Appl. Phys. 48, 3S1 (2009).
[CrossRef] [PubMed]

Taylor, A. B.

Ueno, K.

Vogelgesang, R.

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).

Wang, J.

Wrachtrup, J.

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).

Yamasaki, T.

Yan, M.

Yanagisawa, T.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, T. Iida, “Multilayer 500 Gbyte optical disk,” Jpn. J. Appl. Phys. 48, 3S1 (2009).
[CrossRef] [PubMed]

Zakharian, A. R.

Zhang, Z.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

Adv. Funct. Mater.

J. W. M. Chon, C. Bullen, P. Zijlstra, M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

Ann. Phys.

R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Ann. Phys. 342(5), 881–900 (1912).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

S. W. Prescott, P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, T. Iida, “Multilayer 500 Gbyte optical disk,” Jpn. J. Appl. Phys. 48, 3S1 (2009).
[CrossRef] [PubMed]

Nature

P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Physica Status Solidi B

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, “Plasmonic antennas, positioning, and coupling of individual quantum systems,” Physica Status Solidi B 249, 666–677 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The concept of detuned polarization continuous-wave readout on plasmonic nanorod based multilayered recording medium. (a) NRs are of single size and aligned in the same direction throughout the layers. (b) plot of scattering signal to input power ratio at SPR condition (ξSPR) from 1st layer to 10th layer for the NR sample shown in (a). In the first layer readout, the expected cos2θ response of NR scattering can be seen. However, for subsequent layer, optimum peak polarization for readout is shown to be detuned from 0 degree readout, due to heavy extinction at that angle. At 10th layer, the best readout is shown to be ~70 degrees. (c) NRs in this case are slightly twisted at an angle ϕ = 10þ progressively from first layer to the last layer. (d) plot of ξSPR from 1st layer to 10th layer for the twisted NR sample shown (c). NRs in this simulation are gold NRs, which have aspect ratio of 3 with width 15 nm, concentration of 2.5 x 109 NRs / cm2. (e) Comparison of required readout power for equalized signal throughout the layers. Resonant SPR readout, detuned, and detuned & twisted readout (ϕ = 10þ) showing orders of magnitude improvement with detuned & twisted case.

Fig. 2
Fig. 2

: (a) Schematic illustration of multilayer structure fabrication. Nanorods are fabricated onto a 5 nm Titanium adhesion layer, then overcoated with 20 µm of SU-8, with the process repeating for each layer. SEM image of fabricated nanorods, dimensions are measured as: 90nm long, 30nm wide, 30nm thick, with 180 nm center to center spacing. (b) Wide-field transmission optical image of a 3 layer nanorod array and alignment markers. All nanorods are aligned in the vertical direction in all layers. Defocus of lower layer alignment markers indicates the varying depth of the layers. A slight misalignment (~15 µm) was induced for better imaging. Side length of the array is 200 µm. (c) Collected depth dependent scattering measurements from multilayer, with 90° polarization, 1.4 NA oil immersion objective, and 870 nm wavelength.

Fig. 3
Fig. 3

: SEM images of the nanorods fabricated within twisted multilayer geometry, with each array image taken before overcoating with SU-8. The nanorods in layers 1, 2, 3 are oriented at 0°, 45°, and 90° respectively. Overlaid cartoon illustrates how twisting mitigates the transit loss experienced by the polarized light, by reducing the apparent extinction coefficients of the nanorods in the upper layers, σext. The light is focused on layer 3, with the polarization direction represented by the red arrow, where the maximum scattering signal is generated.

Fig. 4
Fig. 4

: (a) Experimental and theoretically obtained scattering intensities for a range of angles for readout from multilayer arrays of gold nanorods, where the nanorod orientation angle is kept constant between each layer. (b) Similar data for the twisted multilayer, where the angle of the nanorods changes between layers: 0°, 45° and 90° for layers 1, 2 and 3 respectively. (c) Experimental and theoretical readout powers required to achieve constant output on the detection PMT for various layers, with the polarization set to the match the orientation angle of the nanorods in each layer.

Fig. 5
Fig. 5

(a) Confocal scattering images (15 μm x 15 μm image) obtained after single-pulse-per-pixel patterning of the nanorod arrays on the layers within the twisted configuration. Letter “C” was recorded on the layer 1, “M” on layer 2 and “P” on layer 3. Patterning was conducted using a wavelength of 870 nm, with the polarization adjusted to match θNR on each layer. (b) Bit trace cross-section along a series of fabricated bits, showing good recording contrast between written and un-written areas, and a high signal to noise ratio.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ξ S P R ( θ , n ) = P s P i = N A 2 π ( 0.61 λ ) 2 σ s S P R ( θ ) [ exp ( N σ e S P R ( θ ) α ) ] 2 ( n 1 )
ξ t w i s t e d S P R ( θ , n ) = P s P i = N A 2 π ( 0.61 λ ) 2 σ s S P R ( θ ) i = 1 n [ exp ( N σ e S P R cos 2 ( θ i ϕ ) α ) ] 2

Metrics