Abstract

We experimentally investigated concurrent parametric downconversion processes in a two-dimensional hexagonally poled lithium tantalate crystal. The substantial enhancement of parametric gain was observed when concurrent processes shared a common parametric beam. Both degenerate and nondegenerate concurrent parametric downconversion processes were studied. Analyses of the spatial forms and output angles showed a strong dependence on the working temperature, during which a well-defined beamlike parametric output was observed. Our results will stimulate the design for coherent high-gain generation of multiple parametric beams and also shed light on the compact engineering of path-entanglement with specific spatial forms based on concurrent spontaneous parametric downconversion processes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
    [CrossRef]
  2. H. C. Liu, A. H. Kung, “Substantial gain enhancement for optical parametric amplification and oscillation in two-dimentional χ2 nonlinear photonic crystals,” Opt. Express 16, 9714–9725 (2008).
  3. K. Gallo, M. Levenius, F. Laurell, V. Pasiskevicius, “Twin-beam optical parametric generation in χ2 nonlinear photonic crystals,” Appl. Phys. Lett. 98(16), 161113 (2011).
  4. M. Levenius, V. Pasiskevicius, K. Gallo, “Angular degrees of freedom in twin-beam parametric down-conversion,” Appl. Phys. Lett. 101(12), 121114 (2012).
    [CrossRef]
  5. M. Lazoul, A. Boudrioua, L. M. Simohamed, A. Fischer, L. H. Peng, “Experimental study of multiwavelength parametric generation in a two-dimensional periodically poled lithium tantalate crystal,” Opt. Lett. 38(19), 3892–3894 (2013).
    [CrossRef] [PubMed]
  6. Y. X. Gong, P. Xu, J. Shi, L. Chen, X. Q. Yu, P. Xue, S. N. Zhu, “Generation of polarization-entangled photon pairs via concurrent spontaneous parametric downconversions in a single χ2 nonlinear photonic crystal,” Opt. Lett. 37(21), 4374–4376 (2012).
  7. H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
    [CrossRef] [PubMed]
  8. Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, S. N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
    [CrossRef]
  9. E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, A. Arie, “Compact 2D nonlinear photonic crystal source of beamlike path entangled photons,” Opt. Express 21(6), 6689–6696 (2013).
    [CrossRef] [PubMed]
  10. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
    [CrossRef]
  11. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
    [CrossRef]

2013 (3)

2012 (2)

2011 (2)

K. Gallo, M. Levenius, F. Laurell, V. Pasiskevicius, “Twin-beam optical parametric generation in χ2 nonlinear photonic crystals,” Appl. Phys. Lett. 98(16), 161113 (2011).

Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, S. N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[CrossRef]

2008 (1)

1998 (1)

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

1995 (1)

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

1993 (1)

M. Yamada, N. Nada, M. Saitoh, K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Arie, A.

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

Boudrioua, A.

Chen, L.

Eisenberg, H. S.

Fischer, A.

Gallo, K.

M. Levenius, V. Pasiskevicius, K. Gallo, “Angular degrees of freedom in twin-beam parametric down-conversion,” Appl. Phys. Lett. 101(12), 121114 (2012).
[CrossRef]

K. Gallo, M. Levenius, F. Laurell, V. Pasiskevicius, “Twin-beam optical parametric generation in χ2 nonlinear photonic crystals,” Appl. Phys. Lett. 98(16), 161113 (2011).

Ganany-Padowicz, A.

Ge, C. Z.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Gong, Y. X.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[CrossRef] [PubMed]

Y. X. Gong, P. Xu, J. Shi, L. Chen, X. Q. Yu, P. Xue, S. N. Zhu, “Generation of polarization-entangled photon pairs via concurrent spontaneous parametric downconversions in a single χ2 nonlinear photonic crystal,” Opt. Lett. 37(21), 4374–4376 (2012).

Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, S. N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[CrossRef]

Habshoosh, N.

Halevy, A.

Hong, J. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Jin, H.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[CrossRef] [PubMed]

Kung, A. H.

Laurell, F.

K. Gallo, M. Levenius, F. Laurell, V. Pasiskevicius, “Twin-beam optical parametric generation in χ2 nonlinear photonic crystals,” Appl. Phys. Lett. 98(16), 161113 (2011).

Lazoul, M.

Leng, H. Y.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[CrossRef] [PubMed]

Levenius, M.

M. Levenius, V. Pasiskevicius, K. Gallo, “Angular degrees of freedom in twin-beam parametric down-conversion,” Appl. Phys. Lett. 101(12), 121114 (2012).
[CrossRef]

K. Gallo, M. Levenius, F. Laurell, V. Pasiskevicius, “Twin-beam optical parametric generation in χ2 nonlinear photonic crystals,” Appl. Phys. Lett. 98(16), 161113 (2011).

Liu, H. C.

Luo, X. W.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[CrossRef] [PubMed]

Megidish, E.

Ming, N. B.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Pasiskevicius, V.

M. Levenius, V. Pasiskevicius, K. Gallo, “Angular degrees of freedom in twin-beam parametric down-conversion,” Appl. Phys. Lett. 101(12), 121114 (2012).
[CrossRef]

K. Gallo, M. Levenius, F. Laurell, V. Pasiskevicius, “Twin-beam optical parametric generation in χ2 nonlinear photonic crystals,” Appl. Phys. Lett. 98(16), 161113 (2011).

Peng, L. H.

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Shi, J.

Shu, H.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Simohamed, L. M.

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Xie, Z. D.

Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, S. N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[CrossRef]

Xu, P.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[CrossRef] [PubMed]

Y. X. Gong, P. Xu, J. Shi, L. Chen, X. Q. Yu, P. Xue, S. N. Zhu, “Generation of polarization-entangled photon pairs via concurrent spontaneous parametric downconversions in a single χ2 nonlinear photonic crystal,” Opt. Lett. 37(21), 4374–4376 (2012).

Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, S. N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[CrossRef]

Xue, P.

Y. X. Gong, P. Xu, J. Shi, L. Chen, X. Q. Yu, P. Xue, S. N. Zhu, “Generation of polarization-entangled photon pairs via concurrent spontaneous parametric downconversions in a single χ2 nonlinear photonic crystal,” Opt. Lett. 37(21), 4374–4376 (2012).

Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, S. N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Yu, W. J.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[CrossRef] [PubMed]

Yu, X. Q.

Y. X. Gong, P. Xu, J. Shi, L. Chen, X. Q. Yu, P. Xue, S. N. Zhu, “Generation of polarization-entangled photon pairs via concurrent spontaneous parametric downconversions in a single χ2 nonlinear photonic crystal,” Opt. Lett. 37(21), 4374–4376 (2012).

Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, S. N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[CrossRef]

Zhang, Z. Y.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Zhao, G.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[CrossRef] [PubMed]

Zhong, M. L.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[CrossRef] [PubMed]

Zhu, S. N.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[CrossRef] [PubMed]

Y. X. Gong, P. Xu, J. Shi, L. Chen, X. Q. Yu, P. Xue, S. N. Zhu, “Generation of polarization-entangled photon pairs via concurrent spontaneous parametric downconversions in a single χ2 nonlinear photonic crystal,” Opt. Lett. 37(21), 4374–4376 (2012).

Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, S. N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Zhu, Y. Y.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Appl. Phys. Lett. (3)

K. Gallo, M. Levenius, F. Laurell, V. Pasiskevicius, “Twin-beam optical parametric generation in χ2 nonlinear photonic crystals,” Appl. Phys. Lett. 98(16), 161113 (2011).

M. Levenius, V. Pasiskevicius, K. Gallo, “Angular degrees of freedom in twin-beam parametric down-conversion,” Appl. Phys. Lett. 101(12), 121114 (2012).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

J. Appl. Phys. (1)

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, S. N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used for optical parametric downconversion processes in 2D HexPLT. F1, 700 nm high pass filter; HWP, half wave plate; PBS, polarization beam splitter; M, mirror; S, pinhole; L, lens; F2, 532 nm HR, 1064 nm HT; F3, narrowband filter centered at 1064 nm for the degenerate dual-PDC processes. The inset is a micrograph of the 2D HexPLT.

Fig. 2
Fig. 2

(a) At 153.8°C, the dual-PDC processes share a common parametric beam paralleled to x ^ -axis, meanwhile the other parametric beam slightly tilts to the pump at ± 2.2 o . The above is the spatial distribution shot by a CCD camera placed at the focal plane of a 50mm convex Lens. (b) At 176°C, the degenerate 1064 nm parametric beams are collinear, both slightly tilted to the pump at ± 1.1 o . The RLVs G 1,0 and G 0,1 can be expressed as G 0,1 = G 1,0 =4π/( 3 a) (oriented ± 30 o with respect to x ^ -axis).

Fig. 3
Fig. 3

(a) The output energy of multiple parametric beams after two optical IF filters centered at 1064 nm as the temperature is varied. The largest conversion efficiency is observed near 153.8°C. (b) The emitting angle of the parametric beams versus the temperature.

Fig. 4
Fig. 4

(a) The common-idler configuration of dual-PDC processes utilizing the RLVs G 0,1 and G 1,0 , the right hand is the spatial distribution after the long wave pass filter when the temperature reaches 150°C. (b) Temperature dependence of signal and idler wavelengths. The signal wavelength is recorded by a UV-Vis spectrometer. The corresponding idler wavelength is obtained by the conservation law of energy.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k p = k s + k i + G m,n λ p 1 = λ s 1 + λ i 1

Metrics