Abstract

Head-worn displays have begun to infiltrate the commercial electronics scene as mobile computing power has decreased in price and increased in availability. A prototypical head-worn display is both lightweight and compact, while achieving high quality optical performance. In off-axis geometries, freeform optical surfaces allow an optical designer additional degrees of freedom necessary to create a device that meets these conditions. In this paper, we show two optical see-through head-worn display designs, both comprising two freeform elements with an emphasis on visual space assessment and parameters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Azuma, “Augmented reality: Approaches and Technical Challenges,” in Fundamentals of Wearable Computers and Augumented Reality, W. Barfield and T. Caudell, eds. (L. Erlbaum Associates Inc., 2000), pp. 27–63.
  2. O. Cakmakci, J. Rolland, “Head-Worn Displays: A Review,” J. Display Technol. 2(3), 199–216 (2006).
    [CrossRef]
  3. J. P. Rolland, K. P. Thompson, H. Urey, and M. Thomas, “See-Through Head Worn Display (HWD) Architectures,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012), pp. 2145–2170.
  4. O. Cakmakci and J. P. Rolland, “Examples of HWD Architectures: Low-, Mid- and Wide-Field of View Designs,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012), pp. 2195–2211.
  5. W. T. Plummer, “Unusual optics of the Polaroid SX-70 Land camera,” Appl. Opt. 21(2), 196–208 (1982).
    [CrossRef] [PubMed]
  6. A. Takagi, S. Yamazaki, Y. Saito, N. Taniguchi, “Development of a stereo video see-through HMD for AR systems,” in Proceedings of IEEE and ACM International Symposium on Augmented Reality, 2000), 68–77.
    [CrossRef]
  7. O. Cakmakci, J. Rolland, “Design and fabrication of a dual-element off-axis near-eye optical magnifier,” Opt. Lett. 32(11), 1363–1365 (2007).
    [CrossRef] [PubMed]
  8. D. Cheng, Y. Wang, H. Hua, M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [CrossRef] [PubMed]
  9. K. Fuerschbach, J. P. Rolland, K. P. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express 19(22), 21919–21928 (2011).
    [CrossRef] [PubMed]
  10. O. Cakmakci, B. Moore, H. Foroosh, J. P. Rolland, “Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express 16(3), 1583–1589 (2008).
    [CrossRef] [PubMed]
  11. R. V. Shack, K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE 0251, 146–153 (1980).
    [CrossRef]
  12. K. Thompson, “Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry,” J. Opt. Soc. Am. A 22(7), 1389–1401 (2005).
    [CrossRef] [PubMed]
  13. Y. Ha, J. Rolland, “Optical assessment of head-mounted displays in visual space,” Appl. Opt. 41(25), 5282–5289 (2002).
    [CrossRef] [PubMed]
  14. W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000).
  15. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).
  16. C. E. Rash, Helmet Mounted Displays: Design Issues for Rotary-Wing Aircraft (SPIE Press, 1999).
  17. A. Bauer, US Provisional Patent Application (61/827,033) filed 5/23/13.
  18. A. Bauer, S. Vo, K. Parkins, F. Rodriguez, O. Cakmakci, J. P. Rolland, “Computational optical distortion correction using a radial basis function-based mapping method,” Opt. Express 20(14), 14906–14920 (2012).
    [CrossRef] [PubMed]
  19. B. H. Walker, Optical Design for Visual Systems (SPIE Press, 2000).
  20. J. P. Rolland, H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence (Camb. Mass.) 9(3), 287–309 (2000).
    [CrossRef]
  21. P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51, 013006 (2012).

2012

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51, 013006 (2012).

A. Bauer, S. Vo, K. Parkins, F. Rodriguez, O. Cakmakci, J. P. Rolland, “Computational optical distortion correction using a radial basis function-based mapping method,” Opt. Express 20(14), 14906–14920 (2012).
[CrossRef] [PubMed]

2011

2009

2008

2007

2006

2005

2002

2000

J. P. Rolland, H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence (Camb. Mass.) 9(3), 287–309 (2000).
[CrossRef]

1982

1980

R. V. Shack, K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE 0251, 146–153 (1980).
[CrossRef]

Bauer, A.

Cakmakci, O.

Cheng, D.

Davies, M. A.

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51, 013006 (2012).

Dutterer, B. S.

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51, 013006 (2012).

Foroosh, H.

Fuchs, H.

J. P. Rolland, H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence (Camb. Mass.) 9(3), 287–309 (2000).
[CrossRef]

Fuerschbach, K.

Ha, Y.

Hua, H.

Lineberger, J. L.

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51, 013006 (2012).

Moore, B.

Parkins, K.

Plummer, W. T.

Rodriguez, F.

Rolland, J.

Rolland, J. P.

Saito, Y.

A. Takagi, S. Yamazaki, Y. Saito, N. Taniguchi, “Development of a stereo video see-through HMD for AR systems,” in Proceedings of IEEE and ACM International Symposium on Augmented Reality, 2000), 68–77.
[CrossRef]

Shack, R. V.

R. V. Shack, K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE 0251, 146–153 (1980).
[CrossRef]

Smilie, P. J.

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51, 013006 (2012).

Suleski, T. J.

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51, 013006 (2012).

Takagi, A.

A. Takagi, S. Yamazaki, Y. Saito, N. Taniguchi, “Development of a stereo video see-through HMD for AR systems,” in Proceedings of IEEE and ACM International Symposium on Augmented Reality, 2000), 68–77.
[CrossRef]

Talha, M. M.

Taniguchi, N.

A. Takagi, S. Yamazaki, Y. Saito, N. Taniguchi, “Development of a stereo video see-through HMD for AR systems,” in Proceedings of IEEE and ACM International Symposium on Augmented Reality, 2000), 68–77.
[CrossRef]

Thompson, K.

K. Thompson, “Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry,” J. Opt. Soc. Am. A 22(7), 1389–1401 (2005).
[CrossRef] [PubMed]

R. V. Shack, K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE 0251, 146–153 (1980).
[CrossRef]

Thompson, K. P.

Vo, S.

Wang, Y.

Yamazaki, S.

A. Takagi, S. Yamazaki, Y. Saito, N. Taniguchi, “Development of a stereo video see-through HMD for AR systems,” in Proceedings of IEEE and ACM International Symposium on Augmented Reality, 2000), 68–77.
[CrossRef]

Appl. Opt.

J. Display Technol.

J. Opt. Soc. Am. A

Opt. Eng.

P. J. Smilie, B. S. Dutterer, J. L. Lineberger, M. A. Davies, T. J. Suleski, “Design and characterization of an infrared Alvarez lens,” Opt. Eng. 51, 013006 (2012).

Opt. Express

Opt. Lett.

Presence (Camb. Mass.)

J. P. Rolland, H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence (Camb. Mass.) 9(3), 287–309 (2000).
[CrossRef]

Proc. SPIE

R. V. Shack, K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE 0251, 146–153 (1980).
[CrossRef]

Other

W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).

C. E. Rash, Helmet Mounted Displays: Design Issues for Rotary-Wing Aircraft (SPIE Press, 1999).

A. Bauer, US Provisional Patent Application (61/827,033) filed 5/23/13.

B. H. Walker, Optical Design for Visual Systems (SPIE Press, 2000).

R. T. Azuma, “Augmented reality: Approaches and Technical Challenges,” in Fundamentals of Wearable Computers and Augumented Reality, W. Barfield and T. Caudell, eds. (L. Erlbaum Associates Inc., 2000), pp. 27–63.

J. P. Rolland, K. P. Thompson, H. Urey, and M. Thomas, “See-Through Head Worn Display (HWD) Architectures,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012), pp. 2145–2170.

O. Cakmakci and J. P. Rolland, “Examples of HWD Architectures: Low-, Mid- and Wide-Field of View Designs,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012), pp. 2195–2211.

A. Takagi, S. Yamazaki, Y. Saito, N. Taniguchi, “Development of a stereo video see-through HMD for AR systems,” in Proceedings of IEEE and ACM International Symposium on Augmented Reality, 2000), 68–77.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Astigmatism and (b) coma contributions across the full FOV for a representative obscured rotationally symmetric system. Coma is the dominant aberration with only about λ/5 P-V.

Fig. 2
Fig. 2

(a) Astigmatism and (b) coma contributions across the full FOV after tilting the surfaces to form a representative unobscured, non-rotationally symmetric system. Tilting the surfaces has resulted in significant amounts of nearly field-constant coma and, the now dominant, astigmatism with about 4 waves.

Fig. 3
Fig. 3

2-dimensional optical layout of (a) Design 1 and (b) Design 2. They both consist of two powered mirrors. Design 1 has an additional fold flat that serves as the combiner, whereas a powered mirror serves that purpose in Design 2 [17].

Fig. 4
Fig. 4

Surface figure maps with the base sphere removed. Clockwise from top left, the secondary mirror of Design 1, the tertiary mirror of Design 1, the secondary mirror of Design 2 and the primary mirror of Design 2.

Fig. 5
Fig. 5

3D rendering of Design 2 mounted on a model of a human head in a monocular fashion.

Fig. 6
Fig. 6

Design 1 performance analysis. (Left) MTF FFDs shown for two object orientations (0° and 90°) and two frequencies (50 lp/mm and 35 lp/mm). (Right) Distortion grid showing < 1.5% distortion.

Fig. 7
Fig. 7

Design 2 performance analysis. (Left) MTF FFDs shown for two object orientations (0° and 90°) and two frequencies (50 lp/mm and 35 lp/mm). (Right) Distortion grid showing < 6.2% distortion.

Fig. 8
Fig. 8

FFD MTF plots in visual space for (a) Design 1 and (b) Design 2. The top and bottom rows represent object orientations of 0° and 90°, respectively. Plots are shown for 0.65 cylces/arcmin (the maximum resolution based on the OLED) and 0.45 cycles/arcmin (70% of the maximum resolution).

Tables (2)

Tables Icon

Table 1 Optical Design Specification Table

Tables Icon

Table 2 Percent MTF drop for each tolerance at 35 lp/mm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z(x,y)= c ρ 2 1+ 1(1+k) c 2 ρ 2 + j=1 16 C j Z j

Metrics