Abstract

We demonstrate analytically and numerically that the detection of the spectral response of a single spherical Au nanoantenna allows one to map very small (down to 5·10−4 RIU) variations of the refractive index of an optically transparent sample. Spectral shift of the dipole local plasmon resonance wavelength of the nanoantenna and the spectral sensitivity of the method developed was estimated by using simple analytical quasi-static model. A pointed scanning probe based on fiber microaxicon with the Au spherical nanoantenna attached to its tip was proposed to realize the RI mapping method. Finite-difference time-domain numerical simulations of the spectral properties of the proposed probe are in good agreement with the theoretical quasi-electrostatic estimations for a radius of the nanoantenna not exceeding the skin depth of Au.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, “Simultaneous ir material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
    [CrossRef]
  2. P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon 1(3), 438–483 (2009).
    [CrossRef]
  3. L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
    [CrossRef]
  4. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
    [CrossRef] [PubMed]
  5. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
    [CrossRef] [PubMed]
  6. T. Lee, E. Lee, S. Oh, J. W. Hahn, “Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture,” Nanotechnology 24(14), 145502 (2013).
    [CrossRef] [PubMed]
  7. L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, 2006).
  8. M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
    [CrossRef] [PubMed]
  9. L. Wang, E. X. Jin, S. M. Uppuluri, X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
    [CrossRef] [PubMed]
  10. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
    [CrossRef] [PubMed]
  11. T. Taubner, R. Hillenbrand, F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
    [CrossRef]
  12. T. Taubner, F. Keilmann, R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
    [CrossRef] [PubMed]
  13. E. J. Sánchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
    [CrossRef]
  14. F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
    [CrossRef] [PubMed]
  15. L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
    [CrossRef] [PubMed]
  16. Y. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, E. V. Pustovalov, A. V. Nepomnyashchii, “Cavity-based Fabry-Perot probe with protruding subwavelength aperture,” Opt. Lett. 36(19), 3945–3947 (2011).
    [CrossRef] [PubMed]
  17. K.-S. Lee, M.-A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
    [CrossRef] [PubMed]
  18. M. Born and E. Wolf, The Principles of Optics (Pergamon Press, 1964).
  19. P. G. Etchegoin, E. C. Le Ru, M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
    [CrossRef] [PubMed]
  20. P. B. Johnson, R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  21. This curve was obtained by using the Eq. (8) and the condition (6).
  22. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  23. G. W. Bryant, F. J. García de Abajo, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
    [CrossRef] [PubMed]
  24. www.yokogawa.com .
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  26. A. A. Kuchmizhak, S. O. Gurbatov, A. A. Nepomniaschii, O. B. Vitrik, Yu. N. Kulchin, “High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams,” Appl. Opt. 53(5), 937–943 (2014).
    [CrossRef] [PubMed]
  27. In accordance with our numerical simulations the presence of the microaxicon red-shifts the λSP0(a) dependence approximately on 20 nm in comparison with the single nanoparticles in vacuo.
  28. B. M. Ross, L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34(7), 896–898 (2009).
    [CrossRef] [PubMed]
  29. K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [CrossRef] [PubMed]
  30. Z. Pan, J. Guo, “Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas,” Opt. Express 21(26), 32491–32500 (2013).
    [CrossRef] [PubMed]
  31. T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
    [CrossRef] [PubMed]
  32. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46(33), 8061–8067 (2007).
    [CrossRef] [PubMed]
  33. A. I. Kuznetsov, R. Kiyan, B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
    [CrossRef] [PubMed]
  34. P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]

2014 (1)

2013 (4)

Z. Pan, J. Guo, “Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas,” Opt. Express 21(26), 32491–32500 (2013).
[CrossRef] [PubMed]

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
[CrossRef] [PubMed]

T. Lee, E. Lee, S. Oh, J. W. Hahn, “Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture,” Nanotechnology 24(14), 145502 (2013).
[CrossRef] [PubMed]

2012 (1)

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

2011 (3)

K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Y. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, E. V. Pustovalov, A. V. Nepomnyashchii, “Cavity-based Fabry-Perot probe with protruding subwavelength aperture,” Opt. Lett. 36(19), 3945–3947 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

2008 (1)

G. W. Bryant, F. J. García de Abajo, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

2007 (3)

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46(33), 8061–8067 (2007).
[CrossRef] [PubMed]

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, “Simultaneous ir material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

2006 (5)

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

K.-S. Lee, M.-A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

P. G. Etchegoin, E. C. Le Ru, M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

L. Wang, E. X. Jin, S. M. Uppuluri, X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

T. Taubner, R. Hillenbrand, F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
[CrossRef]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

2001 (1)

1999 (1)

E. J. Sánchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

1997 (1)

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Aizpurua, J.

G. W. Bryant, F. J. García de Abajo, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Amenabar, I.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Baida, F. I.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon 1(3), 438–483 (2009).
[CrossRef]

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Bian, R. X.

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Burr, G. W.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Charraut, D.

Chichkov, B. N.

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chuvilin, A.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Deutsch, B.

P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon 1(3), 438–483 (2009).
[CrossRef]

Ebbesen, T. W.

El-Sayed, M.-A.

K.-S. Lee, M.-A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

Fischer, U. C.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Garcia-Parajo, M. F.

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

Grosjean, T.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46(33), 8061–8067 (2007).
[CrossRef] [PubMed]

Guo, J.

Gurbatov, S. O.

Hafner, J. H.

K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Hahn, J. W.

T. Lee, E. Lee, S. Oh, J. W. Hahn, “Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture,” Nanotechnology 24(14), 145502 (2013).
[CrossRef] [PubMed]

Hillenbrand, R.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, “Simultaneous ir material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

T. Taubner, F. Keilmann, R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[CrossRef] [PubMed]

T. Taubner, R. Hillenbrand, F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
[CrossRef]

Huber, A. J.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, “Simultaneous ir material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

Huth, F.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

Ibrahim, I. A.

Jin, E. X.

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kazantsev, D.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, “Simultaneous ir material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

Keilmann, F.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, “Simultaneous ir material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

T. Taubner, F. Keilmann, R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[CrossRef] [PubMed]

T. Taubner, R. Hillenbrand, F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Kiyan, R.

Krutokhvostov, R.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

Kuchmizhak, A. A.

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Kulchin, Y. N.

Kulchin, Yu. N.

Kuznetsov, A. I.

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

Lee, E.

T. Lee, E. Lee, S. Oh, J. W. Hahn, “Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture,” Nanotechnology 24(14), 145502 (2013).
[CrossRef] [PubMed]

Lee, K.-S.

K.-S. Lee, M.-A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Lee, L. P.

Lee, T.

T. Lee, E. Lee, S. Oh, J. W. Hahn, “Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture,” Nanotechnology 24(14), 145502 (2013).
[CrossRef] [PubMed]

Lezec, H. J.

Linke, R. A.

Lopatin, S.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

Mayer, K. M.

K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

Mivelle, M.

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Nepomniaschii, A. A.

Nepomnyashchii, A. V.

Neumann, L.

L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
[CrossRef] [PubMed]

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon 1(3), 438–483 (2009).
[CrossRef]

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

E. J. Sánchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Oh, S.

T. Lee, E. Lee, S. Oh, J. W. Hahn, “Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture,” Nanotechnology 24(14), 145502 (2013).
[CrossRef] [PubMed]

Pan, Z.

Pellerin, K. M.

Piquerey, V.

Pustovalov, E. V.

Ross, B. M.

Saleh, S. S.

Sánchez, E. J.

E. J. Sánchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

Sandoz, P.

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Schnell, M.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Suarez, M. A.

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Taubner, T.

T. Taubner, F. Keilmann, R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[CrossRef] [PubMed]

T. Taubner, R. Hillenbrand, F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
[CrossRef]

Thio, T.

Uppuluri, S. M.

van ’t Oever, J.

L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
[CrossRef] [PubMed]

van Hulst, N. F.

L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
[CrossRef] [PubMed]

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

van Zanten, T. S.

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

Vitrik, O. B.

Wang, L.

Wittborn, J.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, “Simultaneous ir material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

Xie, X. S.

E. J. Sánchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Xu, X.

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Adv. Mater. (1)

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, “Simultaneous ir material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[CrossRef]

Adv. Opt. Photon (1)

P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon 1(3), 438–483 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. Taubner, R. Hillenbrand, F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004).
[CrossRef]

Chem. Rev. (1)

K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

P. G. Etchegoin, E. C. Le Ru, M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

K.-S. Lee, M.-A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Nano Lett. (7)

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

G. W. Bryant, F. J. García de Abajo, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013).
[CrossRef] [PubMed]

Nanotechnology (1)

T. Lee, E. Lee, S. Oh, J. W. Hahn, “Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture,” Nanotechnology 24(14), 145502 (2013).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (1)

P. B. Johnson, R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (3)

E. J. Sánchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Other (6)

In accordance with our numerical simulations the presence of the microaxicon red-shifts the λSP0(a) dependence approximately on 20 nm in comparison with the single nanoparticles in vacuo.

M. Born and E. Wolf, The Principles of Optics (Pergamon Press, 1964).

L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, 2006).

This curve was obtained by using the Eq. (8) and the condition (6).

www.yokogawa.com .

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Spherical Au nanoantenna illuminated by the s-polarized plane wave and its image dipole located at a distance d in the semi-infinite homogeneous medium with the dielectric permittivity εm; (b) Equivalent dielectric medium polarized by uniform electric field; (c) Sketch of the FMA with the attached Au nanoantenna.

Fig. 2
Fig. 2

(a-b) Relative dipole LPR wavelength λSPSP0 (λSP0 - dipole LPR wavelength in vacuo) of the nanoantenna as a function of the semi-infinite medium RI nm calculated for s- (a) and p-polarized (b) incident electric field and different “nanoantenna-medium” distances d. (c) Slope Sλ = sp/dnm of the λSP(nm) curves calculated near nm = 1.35 as a function of the “nanoantenna-sample” distance d.

Fig. 3
Fig. 3

(a) Relative dipole LPR wavelength λSPSP0 of the nanoantenna as a function of the sample RI nm calculated for different nanoantenna radii a. (b) Dependence of the dipole LPR wavelength λSP0 in vacuo on the nanoantenna radius a. (c) Normalized change in dipole LPR wavelength ∆λSP with an abrupt step-like spatial change of the sample’s RI from nm = 1.3 to 1.7 RIU calculated at d = 5 nm and nanoantenna radii а = 25 nm and 50 nm, with the estimated lateral resolution of the proposed method being 55 nm and 103 nm, respectively. (d) Far-field (solid curves) and near-field (dashed curves) scattering spectra of the nanoantenna calculated at a = 25 nm and different RI nm of the sample surface.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

p=4π a 3 ε 0 ε Au 1 ε Au +2 E.
E ekv = 1 4 a 3 z 0 3 α ε Au -1 ε Au +2 E.
E ekv = ε ekv 1 2 ε ekv +1 E.
ε ekv = a 3 ( ε m 1) 4 z 0 3 ( ε m +1) ( ε Au 1)+( ε Au +2) 4 a 3 ( ε m 1) 4 z 0 3 ( ε m +1) ε Au .
ε Au (λ)= ε 1 λ p 2 (1/ λ 2 +i/ γ p λ) ,
Re(2 ε ekv + ε Au )=0,
λ SP = λ media 1 ( λ media ) 2 ( λ vak ) 2 ( λ vak ) 2 (1 3 4 a 3 z 0 3 1 ( n m 2 +1) ) ,
ε Au (λ)= ε 1 λ p 2 (1/ λ 2 +i/ γ p λ) + m=1,2 A m λ m [ e i φ m (1/ λ m 1/λi/ γ m ) + e i φ m (1/ λ m +1/λ+i/ γ m ) ] ,
λ SP = λ media 1 ( λ media ) 2 ( λ vak ) 2 ( λ vak ) 2 (1 3 8 a 3 z 0 3 1 ( n m 2 +1) ) .

Metrics