Abstract

A bistable negative lens with a large aperture size (~10mm) by integrating a polarization switch of ferroelectric liquid crystals (FLCs) with a passively anisotropic focusing element is demonstrated. The proposed lens not only exhibits electrically tunable bistability but also fast response time of sub-milliseconds. The tunable lens power is from 0 to −1.74 Diopters. The electro-optical properties and imaging performances are demonstrated. The impact of this study is to provide a solution of electrically bistable liquid crystal lenses for the applications of portable devices, wearable devices and colored ophthalmic lenses.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [CrossRef]
  2. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (John Wiley, 2012).
  3. L. W. Li, D. Bryant, T. Van Heugten, P. J. Bos, “Speed, optical power, and off-axis imaging improvement of refractive liquid crystal lenses,” Appl. Opt. 53(6), 1124–1131 (2014).
    [CrossRef] [PubMed]
  4. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
    [CrossRef] [PubMed]
  5. M. Kawamura, M. Ye, S. Sato, “Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys. 44(8), 6098–6100 (2005).
    [CrossRef]
  6. Y. H. Lin, H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [CrossRef] [PubMed]
  7. H. C. Lin, Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
    [CrossRef]
  8. H. C. Lin, Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
    [CrossRef]
  9. Y. H. Lin, M. S. Chen, H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
    [CrossRef] [PubMed]
  10. H. C. Lin, N. Collings, M. S. Chen, Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [CrossRef] [PubMed]
  11. Y. S. Tsou, Y. H. Lin, A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
    [CrossRef]
  12. H. S. Chen, Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
    [CrossRef] [PubMed]
  13. G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
    [CrossRef]
  14. H. C. Lin, M. S. Chen, Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron Mater. 12(6), 234–240 (2011).
    [CrossRef]
  15. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
    [CrossRef]
  16. H. C. Lin, Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
    [CrossRef] [PubMed]
  17. A. F. Naumov, G. D. Love, M. Y. Loktev, F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
    [CrossRef] [PubMed]
  18. F. Fan, A. K. Srivastava, T. Du, M. C. Tseng, V. G. Chigrinov, H. S. Kwok, “Low voltage tunable liquid crystal lens,” Opt. Lett. 38(20), 4116–4119 (2013).
    [CrossRef] [PubMed]
  19. X. Q. Wang, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38(11), 1775–1777 (2013).
    [CrossRef] [PubMed]
  20. Y. M. Lee, K. H. Lee, Y. Choi, J. H. Kim, “Fast bistable microlens arrays based on a birefringence layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
    [CrossRef]
  21. S. T. Largerwall, Ferroelectric and Antiferroelectric Liquid Crystals (John Wiley, 1999).
  22. P. Xu, X. Li, A. Muravski, V. Chigrinov, and S. Valyukh, “Photoaligned bistable FLC displays with birefringent color switching,” SID 06 Digest (2006), 854.
  23. E. Pozhidaev, V. Chigrinov, X. Li, “Photoaligned ferroelectric liquid crystal passive matrix display with memorized gray scale,” Jpn. J. Appl. Phys. 45(2A), 875–882 (2006).
    [CrossRef]
  24. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley, 2010).
  25. Y. Geng, J. Sun, A. Murauski, V. Chigrinov, H. S. Kwok, “Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals,” Chin. Phys. B 21(8), 080701 (2012).
    [CrossRef]
  26. P. Hariharan, P. E. Ciddor, “Improved switchable achromatic phase shifters,” Opt. Eng. 38(6), 1078–1080 (1999).
    [CrossRef]
  27. Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
    [CrossRef]

2014

L. W. Li, D. Bryant, T. Van Heugten, P. J. Bos, “Speed, optical power, and off-axis imaging improvement of refractive liquid crystal lenses,” Appl. Opt. 53(6), 1124–1131 (2014).
[CrossRef] [PubMed]

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[CrossRef]

2013

2012

H. C. Lin, N. Collings, M. S. Chen, Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[CrossRef] [PubMed]

Y. S. Tsou, Y. H. Lin, A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
[CrossRef]

H. C. Lin, Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[CrossRef] [PubMed]

Y. Geng, J. Sun, A. Murauski, V. Chigrinov, H. S. Kwok, “Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals,” Chin. Phys. B 21(8), 080701 (2012).
[CrossRef]

2011

Y. H. Lin, M. S. Chen, H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[CrossRef] [PubMed]

H. C. Lin, M. S. Chen, Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron Mater. 12(6), 234–240 (2011).
[CrossRef]

2010

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[CrossRef]

H. C. Lin, Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[CrossRef]

H. C. Lin, Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[CrossRef]

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
[CrossRef] [PubMed]

2008

Y. M. Lee, K. H. Lee, Y. Choi, J. H. Kim, “Fast bistable microlens arrays based on a birefringence layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[CrossRef]

2007

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

2006

E. Pozhidaev, V. Chigrinov, X. Li, “Photoaligned ferroelectric liquid crystal passive matrix display with memorized gray scale,” Jpn. J. Appl. Phys. 45(2A), 875–882 (2006).
[CrossRef]

2005

M. Kawamura, M. Ye, S. Sato, “Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys. 44(8), 6098–6100 (2005).
[CrossRef]

1999

1979

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Asatryan, K.

Äyräs, P.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Bagramyan, A.

Bos, P. J.

Bryant, D.

Chen, H. S.

Chen, M. S.

Chigrinov, V.

Y. Geng, J. Sun, A. Murauski, V. Chigrinov, H. S. Kwok, “Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals,” Chin. Phys. B 21(8), 080701 (2012).
[CrossRef]

E. Pozhidaev, V. Chigrinov, X. Li, “Photoaligned ferroelectric liquid crystal passive matrix display with memorized gray scale,” Jpn. J. Appl. Phys. 45(2A), 875–882 (2006).
[CrossRef]

Chigrinov, V. G.

Choi, Y.

Y. M. Lee, K. H. Lee, Y. Choi, J. H. Kim, “Fast bistable microlens arrays based on a birefringence layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[CrossRef]

Ciddor, P. E.

P. Hariharan, P. E. Ciddor, “Improved switchable achromatic phase shifters,” Opt. Eng. 38(6), 1078–1080 (1999).
[CrossRef]

Collings, N.

Du, T.

Fan, F.

Galstian, T.

Geng, Y.

Y. Geng, J. Sun, A. Murauski, V. Chigrinov, H. S. Kwok, “Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals,” Chin. Phys. B 21(8), 080701 (2012).
[CrossRef]

Guo, Q.

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[CrossRef]

Hariharan, P.

P. Hariharan, P. E. Ciddor, “Improved switchable achromatic phase shifters,” Opt. Eng. 38(6), 1078–1080 (1999).
[CrossRef]

Honkanen, S.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Kawamura, M.

M. Kawamura, M. Ye, S. Sato, “Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys. 44(8), 6098–6100 (2005).
[CrossRef]

Kim, J. H.

Y. M. Lee, K. H. Lee, Y. Choi, J. H. Kim, “Fast bistable microlens arrays based on a birefringence layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[CrossRef]

Kwok, H. S.

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[CrossRef]

X. Q. Wang, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38(11), 1775–1777 (2013).
[CrossRef] [PubMed]

F. Fan, A. K. Srivastava, T. Du, M. C. Tseng, V. G. Chigrinov, H. S. Kwok, “Low voltage tunable liquid crystal lens,” Opt. Lett. 38(20), 4116–4119 (2013).
[CrossRef] [PubMed]

Y. Geng, J. Sun, A. Murauski, V. Chigrinov, H. S. Kwok, “Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals,” Chin. Phys. B 21(8), 080701 (2012).
[CrossRef]

Lee, K. H.

Y. M. Lee, K. H. Lee, Y. Choi, J. H. Kim, “Fast bistable microlens arrays based on a birefringence layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[CrossRef]

Lee, Y. M.

Y. M. Lee, K. H. Lee, Y. Choi, J. H. Kim, “Fast bistable microlens arrays based on a birefringence layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[CrossRef]

Li, G.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Li, L. W.

Li, X.

E. Pozhidaev, V. Chigrinov, X. Li, “Photoaligned ferroelectric liquid crystal passive matrix display with memorized gray scale,” Jpn. J. Appl. Phys. 45(2A), 875–882 (2006).
[CrossRef]

Lin, H. C.

H. C. Lin, Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[CrossRef] [PubMed]

H. C. Lin, N. Collings, M. S. Chen, Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[CrossRef] [PubMed]

Y. H. Lin, M. S. Chen, H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[CrossRef] [PubMed]

H. C. Lin, M. S. Chen, Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron Mater. 12(6), 234–240 (2011).
[CrossRef]

H. C. Lin, Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[CrossRef]

H. C. Lin, Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[CrossRef]

Lin, Y. H.

Y. H. Lin, H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[CrossRef] [PubMed]

H. S. Chen, Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[CrossRef] [PubMed]

H. C. Lin, N. Collings, M. S. Chen, Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[CrossRef] [PubMed]

Y. S. Tsou, Y. H. Lin, A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
[CrossRef]

H. C. Lin, Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[CrossRef] [PubMed]

H. C. Lin, M. S. Chen, Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron Mater. 12(6), 234–240 (2011).
[CrossRef]

Y. H. Lin, M. S. Chen, H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[CrossRef] [PubMed]

H. C. Lin, Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[CrossRef]

H. C. Lin, Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[CrossRef]

Loktev, M. Y.

Love, G. D.

Mathine, D. L.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Murauski, A.

Y. Geng, J. Sun, A. Murauski, V. Chigrinov, H. S. Kwok, “Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals,” Chin. Phys. B 21(8), 080701 (2012).
[CrossRef]

Naumov, A. F.

Peyghambarian, N.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Pozhidaev, E.

E. Pozhidaev, V. Chigrinov, X. Li, “Photoaligned ferroelectric liquid crystal passive matrix display with memorized gray scale,” Jpn. J. Appl. Phys. 45(2A), 875–882 (2006).
[CrossRef]

Pozhidaev, E. P.

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[CrossRef]

Presnyakov, V.

Sato, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[CrossRef]

M. Kawamura, M. Ye, S. Sato, “Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys. 44(8), 6098–6100 (2005).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Srivastava, A. K.

Sun, J.

Y. Geng, J. Sun, A. Murauski, V. Chigrinov, H. S. Kwok, “Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals,” Chin. Phys. B 21(8), 080701 (2012).
[CrossRef]

Takahashi, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[CrossRef]

Tork, A.

Tseng, M. C.

Tsou, Y. S.

Y. S. Tsou, Y. H. Lin, A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
[CrossRef]

Uchida, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[CrossRef]

Valley, P.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Van Heugten, T.

Vladimirov, F. L.

Wang, B.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[CrossRef]

Wang, X. Q.

Wei, A. C.

Y. S. Tsou, Y. H. Lin, A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
[CrossRef]

Yamaguchi, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[CrossRef]

Yanase, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[CrossRef]

Ye, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[CrossRef]

M. Kawamura, M. Ye, S. Sato, “Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys. 44(8), 6098–6100 (2005).
[CrossRef]

Zohrabyan, A.

Appl. Opt.

Appl. Phys. Express

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, H. S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[CrossRef]

Appl. Phys. Lett.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

H. C. Lin, Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[CrossRef]

Chin. Phys. B

Y. Geng, J. Sun, A. Murauski, V. Chigrinov, H. S. Kwok, “Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals,” Chin. Phys. B 21(8), 080701 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. S. Tsou, Y. H. Lin, A. C. Wei, “Concentrating photovoltaic system using a liquid crystal lens,” IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012).
[CrossRef]

Jpn. J. Appl. Phys.

M. Kawamura, M. Ye, S. Sato, “Optical trapping and manipulation system using liquid-crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys. 44(8), 6098–6100 (2005).
[CrossRef]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[CrossRef]

H. C. Lin, Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49(10), 102502 (2010).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

E. Pozhidaev, V. Chigrinov, X. Li, “Photoaligned ferroelectric liquid crystal passive matrix display with memorized gray scale,” Jpn. J. Appl. Phys. 45(2A), 875–882 (2006).
[CrossRef]

Y. M. Lee, K. H. Lee, Y. Choi, J. H. Kim, “Fast bistable microlens arrays based on a birefringence layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47(8), 6343–6346 (2008).
[CrossRef]

Opt. Eng.

P. Hariharan, P. E. Ciddor, “Improved switchable achromatic phase shifters,” Opt. Eng. 38(6), 1078–1080 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Trans. Electr. Electron Mater.

H. C. Lin, M. S. Chen, Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron Mater. 12(6), 234–240 (2011).
[CrossRef]

Other

S. T. Largerwall, Ferroelectric and Antiferroelectric Liquid Crystals (John Wiley, 1999).

P. Xu, X. Li, A. Muravski, V. Chigrinov, and S. Valyukh, “Photoaligned bistable FLC displays with birefringent color switching,” SID 06 Digest (2006), 854.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley, 2010).

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (John Wiley, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Operating principles and the structure of the bistable negative lens at (a) e-state and (b) o-state. The white arrow of the polarizer indicates the transmissive axis. The propagation direction of incident light is along + z direction. (c) The top view of FLC directors of the FLC layer in (a) θ = 0, and θ = 46 degree means the LC lens is at e-state and at o-state, respectively.

Fig. 2
Fig. 2

Electro-optical properties of the FLC sample under pulsed voltages of (a) 2V, (b) 4V, (c) 6V, and (d) 10V.

Fig. 3
Fig. 3

(a) The image of the LCPC sample placed between two crossed polarizers. (b) The measured phase profile of the LCPC sample. The color bar indicates phase difference in the unit of micron. (c) The optical phase difference as a function of position.

Fig. 4
Fig. 4

The measured phase profile of the assembled sample at (a) e-state( + 10V) and (b) o-state(−10V). (c) Optical intensity of the assembled sample as a function of time with applied voltages.

Fig. 5
Fig. 5

Image performance of the assembled sample (a) at o-state (−10V). (b) After the voltage was turned off, the image remains the one at o-state. (c) Image performance at e-state ( + 10V). (d) After the voltage was turned off, the image remains the one at e-state.

Metrics