Abstract

The dynamic behavior of a monolithic dual-wavelength distributed feedback laser was fully investigated and mapped. The combination of different driving currents for master and slave lasers can generate a wide range of different operational modes, from single mode, period 1 to chaos. Both the optical and microwave spectrum were recorded and analyzed. The detected single mode signal can continuously cover from 15GHz to 50GHz, limited by photodetector bandwidth. The measured optical four-wave-mixing pattern indicates that a 70GHz signal can be generated by this device. By applying rate equation analysis, the important laser parameters can be extracted from the spectrum. The extracted relaxation resonant frequency is found to be 8.96GHz. With the full operational map at hand, the suitable current combination can be applied to the device for proper applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Simonis, K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990).
    [CrossRef]
  2. X.-Q. Qi, J.-M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
    [CrossRef]
  3. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
  4. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
    [CrossRef]
  5. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50(3), 877–887 (2002).
    [CrossRef]
  6. M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express 20(2), 1769–1774 (2012).
    [CrossRef] [PubMed]
  7. J.-M. Liu, H.-F. Chen, S. Tang, “Synchronized chaotic optical communications at high bit rates,” IEEE J. Quantum Electron. 38, 1184–1196 (2002).
  8. A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
  9. L. Chrostowski, Z. Xiaoxue, C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microwave Theory Tech. 54(2), 788–796 (2006).
    [CrossRef]
  10. U. Feiste, D. J. As, A. Ehrhardt, “18 GHz all-optical frequency locking and clock recovery using a self-pulsating two-section DFB-laser,” IEEE Photon. Technol. Lett. 6(1), 106–108 (1994).
    [CrossRef]
  11. G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photon. 7(2), 118–122 (2013).
    [CrossRef]
  12. Y.-S. Juan, F.-Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
    [CrossRef]
  13. G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22(4), 254–256 (2010).
    [CrossRef]
  14. G. E. Villanueva, J. Palací, J. L. Cruz, M. V. Andrés, J. Martí, P. Pérez-Millán, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability,” Opt. Commun. 283(24), 5165–5168 (2010).
    [CrossRef]
  15. B. Sartorius, M. Mohrle, U. Feiste, “12-64 GHz continuous frequency tuning in self-pulsating 1.55-mm multiquantum-well DFB lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 535–538 (1995).
    [CrossRef]
  16. X. Wang, W. Mao, M. Al-Mumin, S. Pappert, H. Jin, L. Guifang, “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett. 11(10), 1292–1294 (1999).
    [CrossRef]
  17. N. A. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, L. F. Lester, “Two-color multi-section quantum dot distributed feedback laser,” Opt. Express 18(26), 27028–27035 (2010).
    [CrossRef] [PubMed]
  18. J. Huang, C. Sun, B. Xiong, Y. Luo, “Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking,” Opt. Express 17(23), 20727–20734 (2009).
    [CrossRef] [PubMed]
  19. C. Laperle, M. Svilans, M. Poirier, M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microwave Theory Tech. 47(7), 1219–1224 (1999).
    [CrossRef]
  20. N. Kim, S.-P. Han, H.-C. Ryu, H. Ko, J.-W. Park, D. Lee, M. Y. Jeon, K. H. Park, “Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation,” Opt. Express 20(16), 17496–17502 (2012).
    [CrossRef] [PubMed]
  21. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express 17(16), 13851–13859 (2009).
    [CrossRef] [PubMed]
  22. G. Carpintero, K. Balakier, Z. Yang, R. C. Guzman, A. Corradi, A. Jimenez, G. Kervella, M. J. Fice, M. Lamponi, M. Chtioui, F. van Dijk, C. C. Renaud, A. Wonfor, E. A. J. M. Bente, R. V. Penty, I. H. White, and A. J. Seeds, “Photonic integrated circuits for millimeter-wave wireless communications,” J. Lightwave Technol. (2014).
  23. M. Zanola, M. J. Strain, G. Giuliani, M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
    [CrossRef]
  24. D. Liu, C. Sun, B. Xiong, Y. Luo, “Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation,” Opt. Express 21(2), 2444–2451 (2013).
    [CrossRef] [PubMed]
  25. C. Zhang, S. Liang, H. Zhu, W. Wang, “Widely tunable dual-mode distributed feedback laser fabricated by selective area growth technology integrated with Ti heaters,” Opt. Lett. 38(16), 3050–3053 (2013).
    [CrossRef] [PubMed]
  26. M. Soldo, N. Gibbons, and G. Giuliani, “Narrow linewidth mm-wave signal generation based on two phase-locked DFB lasers mutually coupled via four wave mixing,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (Optical Society of America, Baltimore, Maryland, 2009), p. JThE32.
    [CrossRef]
  27. C.-Y. Chien, Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, H.-R. Tseng, C.-C. Lin, “Compact photonic integrated chip for tunable microwave generation,” IEEE Photon. Technol. Lett. 26(5), 490–493 (2014).
    [CrossRef]
  28. K. Inoue, T. Mukai, T. Saitoh, “Nearly degenerate four‐wave mixing in a traveling‐wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
    [CrossRef]
  29. C.-C. Lin, C.-Y. Chien, Y.-C. Wu, H.-C. Kuo, and C.-T. Lin, “Evaluation of tunable microwave signals generated by monolithic two-section distributed feedback lasers,” in CLEO: 2013 (Optical Society of America, San Jose, California, 2013), p. JTh2A.104.
  30. J.-M. Liu, T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
    [CrossRef]
  31. I. Petitbon, P. Gallion, G. Debarge, C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
  32. F. Mogensen, H. Olesen, G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).
  33. A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
    [CrossRef] [PubMed]
  34. C.-C. Lin, G. Yoffe, M. Emanuel, S. Rishton, D. Ton, S. Zou, B. Lu, and B. Pezeshki, “Monolithically integrated high speed DFB BH laser arrays for 10Gbbased LX4 application,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, Anaheim, California, 2006), p. OWI84.
  35. T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A 51(5), 4181–4185 (1995).
    [CrossRef] [PubMed]
  36. Y. Kotaki, S. Ogita, M. Matsuda, Y. Kuwahara, H. Ishikawa, “Tunable, narrow-linewidth and high-power lambda /4-shifted DFB laser,” Electron. Lett. 25(15), 990–992 (1989).
    [CrossRef]
  37. B. Dahmani, L. Hollberg, R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12(11), 876–878 (1987).
    [CrossRef] [PubMed]
  38. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
    [CrossRef]
  39. H.-K. Sung, E. K. Lau, M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
    [CrossRef]
  40. P. Gallion, G. Debarge, C. Chabran, “Output spectrum of an unlocked optically driven semiconductor laser,” Opt. Lett. 11(5), 294–296 (1986).
    [CrossRef] [PubMed]
  41. J. Sacher, D. Baums, P. Panknin, W. Elsässer, E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
    [CrossRef] [PubMed]
  42. V. Kovanis, A. Gavrielides, T. B. Simpson, J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett. 67(19), 2780–2782 (1995).
    [CrossRef]
  43. S.-C. Chan, S.-K. Hwang, J.-M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
    [CrossRef] [PubMed]
  44. T. B. Simpson, J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four‐wave mixing in Fabry–Perot semiconductor lasers,” J. Appl. Phys. 73(5), 2587–2589 (1993).
    [CrossRef]

2014

C.-Y. Chien, Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, H.-R. Tseng, C.-C. Lin, “Compact photonic integrated chip for tunable microwave generation,” IEEE Photon. Technol. Lett. 26(5), 490–493 (2014).
[CrossRef]

2013

M. Zanola, M. J. Strain, G. Giuliani, M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

D. Liu, C. Sun, B. Xiong, Y. Luo, “Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation,” Opt. Express 21(2), 2444–2451 (2013).
[CrossRef] [PubMed]

C. Zhang, S. Liang, H. Zhu, W. Wang, “Widely tunable dual-mode distributed feedback laser fabricated by selective area growth technology integrated with Ti heaters,” Opt. Lett. 38(16), 3050–3053 (2013).
[CrossRef] [PubMed]

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
[CrossRef] [PubMed]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[CrossRef]

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photon. 7(2), 118–122 (2013).
[CrossRef]

2012

2011

X.-Q. Qi, J.-M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[CrossRef]

Y.-S. Juan, F.-Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

2010

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22(4), 254–256 (2010).
[CrossRef]

G. E. Villanueva, J. Palací, J. L. Cruz, M. V. Andrés, J. Martí, P. Pérez-Millán, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability,” Opt. Commun. 283(24), 5165–5168 (2010).
[CrossRef]

N. A. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, L. F. Lester, “Two-color multi-section quantum dot distributed feedback laser,” Opt. Express 18(26), 27028–27035 (2010).
[CrossRef] [PubMed]

2009

2007

H.-K. Sung, E. K. Lau, M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

S.-C. Chan, S.-K. Hwang, J.-M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[CrossRef] [PubMed]

2006

L. Chrostowski, Z. Xiaoxue, C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microwave Theory Tech. 54(2), 788–796 (2006).
[CrossRef]

2003

A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).

2002

J.-M. Liu, H.-F. Chen, S. Tang, “Synchronized chaotic optical communications at high bit rates,” IEEE J. Quantum Electron. 38, 1184–1196 (2002).

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

1999

C. Laperle, M. Svilans, M. Poirier, M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microwave Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

X. Wang, W. Mao, M. Al-Mumin, S. Pappert, H. Jin, L. Guifang, “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett. 11(10), 1292–1294 (1999).
[CrossRef]

1995

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[CrossRef]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A 51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

B. Sartorius, M. Mohrle, U. Feiste, “12-64 GHz continuous frequency tuning in self-pulsating 1.55-mm multiquantum-well DFB lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 535–538 (1995).
[CrossRef]

V. Kovanis, A. Gavrielides, T. B. Simpson, J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett. 67(19), 2780–2782 (1995).
[CrossRef]

1994

U. Feiste, D. J. As, A. Ehrhardt, “18 GHz all-optical frequency locking and clock recovery using a self-pulsating two-section DFB-laser,” IEEE Photon. Technol. Lett. 6(1), 106–108 (1994).
[CrossRef]

J.-M. Liu, T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[CrossRef]

1993

T. B. Simpson, J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four‐wave mixing in Fabry–Perot semiconductor lasers,” J. Appl. Phys. 73(5), 2587–2589 (1993).
[CrossRef]

1992

J. Sacher, D. Baums, P. Panknin, W. Elsässer, E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

1990

G. J. Simonis, K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990).
[CrossRef]

1989

Y. Kotaki, S. Ogita, M. Matsuda, Y. Kuwahara, H. Ishikawa, “Tunable, narrow-linewidth and high-power lambda /4-shifted DFB laser,” Electron. Lett. 25(15), 990–992 (1989).
[CrossRef]

1988

I. Petitbon, P. Gallion, G. Debarge, C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).

1987

K. Inoue, T. Mukai, T. Saitoh, “Nearly degenerate four‐wave mixing in a traveling‐wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
[CrossRef]

B. Dahmani, L. Hollberg, R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12(11), 876–878 (1987).
[CrossRef] [PubMed]

1986

1985

F. Mogensen, H. Olesen, G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).

Accard, A.

Adams, M. J.

Al-Mumin, M.

X. Wang, W. Mao, M. Al-Mumin, S. Pappert, H. Jin, L. Guifang, “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett. 11(10), 1292–1294 (1999).
[CrossRef]

Alsing, P. M.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A 51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

Andres, M. V.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22(4), 254–256 (2010).
[CrossRef]

Andrés, M. V.

G. E. Villanueva, J. Palací, J. L. Cruz, M. V. Andrés, J. Martí, P. Pérez-Millán, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability,” Opt. Commun. 283(24), 5165–5168 (2010).
[CrossRef]

As, D. J.

U. Feiste, D. J. As, A. Ehrhardt, “18 GHz all-optical frequency locking and clock recovery using a self-pulsating two-section DFB-laser,” IEEE Photon. Technol. Lett. 6(1), 106–108 (1994).
[CrossRef]

Atsuki, K.

A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).

Baums, D.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[CrossRef]

Carpintero, G.

Chabran, C.

I. Petitbon, P. Gallion, G. Debarge, C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).

P. Gallion, G. Debarge, C. Chabran, “Output spectrum of an unlocked optically driven semiconductor laser,” Opt. Lett. 11(5), 294–296 (1986).
[CrossRef] [PubMed]

Chan, S.-C.

Chang-Hasnain, C. J.

L. Chrostowski, Z. Xiaoxue, C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microwave Theory Tech. 54(2), 788–796 (2006).
[CrossRef]

Chen, H.-F.

J.-M. Liu, H.-F. Chen, S. Tang, “Synchronized chaotic optical communications at high bit rates,” IEEE J. Quantum Electron. 38, 1184–1196 (2002).

Chien, C.-Y.

C.-Y. Chien, Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, H.-R. Tseng, C.-C. Lin, “Compact photonic integrated chip for tunable microwave generation,” IEEE Photon. Technol. Lett. 26(5), 490–493 (2014).
[CrossRef]

Chrostowski, L.

L. Chrostowski, Z. Xiaoxue, C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microwave Theory Tech. 54(2), 788–796 (2006).
[CrossRef]

Cruz, J. L.

G. E. Villanueva, J. Palací, J. L. Cruz, M. V. Andrés, J. Martí, P. Pérez-Millán, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability,” Opt. Commun. 283(24), 5165–5168 (2010).
[CrossRef]

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22(4), 254–256 (2010).
[CrossRef]

Dahmani, B.

Debarge, G.

I. Petitbon, P. Gallion, G. Debarge, C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).

P. Gallion, G. Debarge, C. Chabran, “Output spectrum of an unlocked optically driven semiconductor laser,” Opt. Lett. 11(5), 294–296 (1986).
[CrossRef] [PubMed]

Drullinger, R.

Ehrhardt, A.

U. Feiste, D. J. As, A. Ehrhardt, “18 GHz all-optical frequency locking and clock recovery using a self-pulsating two-section DFB-laser,” IEEE Photon. Technol. Lett. 6(1), 106–108 (1994).
[CrossRef]

Elsässer, W.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

Feiste, U.

B. Sartorius, M. Mohrle, U. Feiste, “12-64 GHz continuous frequency tuning in self-pulsating 1.55-mm multiquantum-well DFB lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 535–538 (1995).
[CrossRef]

U. Feiste, D. J. As, A. Ehrhardt, “18 GHz all-optical frequency locking and clock recovery using a self-pulsating two-section DFB-laser,” IEEE Photon. Technol. Lett. 6(1), 106–108 (1994).
[CrossRef]

Fice, M. J.

Gallion, P.

I. Petitbon, P. Gallion, G. Debarge, C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).

P. Gallion, G. Debarge, C. Chabran, “Output spectrum of an unlocked optically driven semiconductor laser,” Opt. Lett. 11(5), 294–296 (1986).
[CrossRef] [PubMed]

Gavrielides, A.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A 51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

V. Kovanis, A. Gavrielides, T. B. Simpson, J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett. 67(19), 2780–2782 (1995).
[CrossRef]

Gin, A.

Giuliani, G.

M. Zanola, M. J. Strain, G. Giuliani, M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

Göbel, E. O.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

Grillot, F.

Guifang, L.

X. Wang, W. Mao, M. Al-Mumin, S. Pappert, H. Jin, L. Guifang, “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett. 11(10), 1292–1294 (1999).
[CrossRef]

Han, S.-P.

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[CrossRef]

Henning, I. D.

Hollberg, L.

Hsu, S.-C.

C.-Y. Chien, Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, H.-R. Tseng, C.-C. Lin, “Compact photonic integrated chip for tunable microwave generation,” IEEE Photon. Technol. Lett. 26(5), 490–493 (2014).
[CrossRef]

Huang, J.

Hurtado, A.

Hwang, S.-K.

Inoue, K.

K. Inoue, T. Mukai, T. Saitoh, “Nearly degenerate four‐wave mixing in a traveling‐wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
[CrossRef]

Ishikawa, H.

Y. Kotaki, S. Ogita, M. Matsuda, Y. Kuwahara, H. Ishikawa, “Tunable, narrow-linewidth and high-power lambda /4-shifted DFB laser,” Electron. Lett. 25(15), 990–992 (1989).
[CrossRef]

Jacobsen, G.

F. Mogensen, H. Olesen, G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).

Jang, Y.

Jeon, M. Y.

Jin, H.

X. Wang, W. Mao, M. Al-Mumin, S. Pappert, H. Jin, L. Guifang, “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett. 11(10), 1292–1294 (1999).
[CrossRef]

Juan, Y.-S.

Y.-S. Juan, F.-Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

Kawashima, K.

A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).

Kim, N.

Ko, H.

Kotaki, Y.

Y. Kotaki, S. Ogita, M. Matsuda, Y. Kuwahara, H. Ishikawa, “Tunable, narrow-linewidth and high-power lambda /4-shifted DFB laser,” Electron. Lett. 25(15), 990–992 (1989).
[CrossRef]

Kovanis, V.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A 51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

V. Kovanis, A. Gavrielides, T. B. Simpson, J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett. 67(19), 2780–2782 (1995).
[CrossRef]

Kuwahara, Y.

Y. Kotaki, S. Ogita, M. Matsuda, Y. Kuwahara, H. Ishikawa, “Tunable, narrow-linewidth and high-power lambda /4-shifted DFB laser,” Electron. Lett. 25(15), 990–992 (1989).
[CrossRef]

Laperle, C.

C. Laperle, M. Svilans, M. Poirier, M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microwave Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Lau, E. K.

H.-K. Sung, E. K. Lau, M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

Lee, C. W.

Lee, D.

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[CrossRef]

Lelarge, F.

Lester, L. F.

Liang, S.

Lin, C.-C.

C.-Y. Chien, Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, H.-R. Tseng, C.-C. Lin, “Compact photonic integrated chip for tunable microwave generation,” IEEE Photon. Technol. Lett. 26(5), 490–493 (2014).
[CrossRef]

Lin, F.-Y.

Y.-S. Juan, F.-Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

Liu, D.

Liu, J. M.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A 51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

V. Kovanis, A. Gavrielides, T. B. Simpson, J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett. 67(19), 2780–2782 (1995).
[CrossRef]

T. B. Simpson, J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four‐wave mixing in Fabry–Perot semiconductor lasers,” J. Appl. Phys. 73(5), 2587–2589 (1993).
[CrossRef]

Liu, J.-M.

X.-Q. Qi, J.-M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[CrossRef]

S.-C. Chan, S.-K. Hwang, J.-M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[CrossRef] [PubMed]

J.-M. Liu, H.-F. Chen, S. Tang, “Synchronized chaotic optical communications at high bit rates,” IEEE J. Quantum Electron. 38, 1184–1196 (2002).

J.-M. Liu, T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[CrossRef]

Lo, Y.-H.

C.-Y. Chien, Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, H.-R. Tseng, C.-C. Lin, “Compact photonic integrated chip for tunable microwave generation,” IEEE Photon. Technol. Lett. 26(5), 490–493 (2014).
[CrossRef]

Luo, Y.

Mao, W.

X. Wang, W. Mao, M. Al-Mumin, S. Pappert, H. Jin, L. Guifang, “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett. 11(10), 1292–1294 (1999).
[CrossRef]

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[CrossRef]

Marti, J.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22(4), 254–256 (2010).
[CrossRef]

Martí, J.

G. E. Villanueva, J. Palací, J. L. Cruz, M. V. Andrés, J. Martí, P. Pérez-Millán, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability,” Opt. Commun. 283(24), 5165–5168 (2010).
[CrossRef]

Matsuda, M.

Y. Kotaki, S. Ogita, M. Matsuda, Y. Kuwahara, H. Ishikawa, “Tunable, narrow-linewidth and high-power lambda /4-shifted DFB laser,” Electron. Lett. 25(15), 990–992 (1989).
[CrossRef]

Mee, J.

Mogensen, F.

F. Mogensen, H. Olesen, G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).

Mohrle, M.

B. Sartorius, M. Mohrle, U. Feiste, “12-64 GHz continuous frequency tuning in self-pulsating 1.55-mm multiquantum-well DFB lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 535–538 (1995).
[CrossRef]

Mukai, T.

K. Inoue, T. Mukai, T. Saitoh, “Nearly degenerate four‐wave mixing in a traveling‐wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
[CrossRef]

Murakami, A.

A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).

Murakowski, J. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photon. 7(2), 118–122 (2013).
[CrossRef]

Naderi, N. A.

Nami, M.

Ogita, S.

Y. Kotaki, S. Ogita, M. Matsuda, Y. Kuwahara, H. Ishikawa, “Tunable, narrow-linewidth and high-power lambda /4-shifted DFB laser,” Electron. Lett. 25(15), 990–992 (1989).
[CrossRef]

Olesen, H.

F. Mogensen, H. Olesen, G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).

Palaci, J.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22(4), 254–256 (2010).
[CrossRef]

Palací, J.

G. E. Villanueva, J. Palací, J. L. Cruz, M. V. Andrés, J. Martí, P. Pérez-Millán, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability,” Opt. Commun. 283(24), 5165–5168 (2010).
[CrossRef]

Panknin, P.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

Pappert, S.

X. Wang, W. Mao, M. Al-Mumin, S. Pappert, H. Jin, L. Guifang, “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett. 11(10), 1292–1294 (1999).
[CrossRef]

Park, J.-W.

Park, K. H.

Perez-Millan, P.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22(4), 254–256 (2010).
[CrossRef]

Pérez-Millán, P.

G. E. Villanueva, J. Palací, J. L. Cruz, M. V. Andrés, J. Martí, P. Pérez-Millán, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability,” Opt. Commun. 283(24), 5165–5168 (2010).
[CrossRef]

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[CrossRef]

Petitbon, I.

I. Petitbon, P. Gallion, G. Debarge, C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).

Poirier, M.

C. Laperle, M. Svilans, M. Poirier, M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microwave Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Prather, D. W.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photon. 7(2), 118–122 (2013).
[CrossRef]

Purchase, K. G.

G. J. Simonis, K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990).
[CrossRef]

Qi, X.-Q.

X.-Q. Qi, J.-M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[CrossRef]

Renaud, C. C.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[CrossRef]

Rouvalis, E.

Ryu, H.-C.

Sacher, J.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

Saitoh, T.

K. Inoue, T. Mukai, T. Saitoh, “Nearly degenerate four‐wave mixing in a traveling‐wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
[CrossRef]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[CrossRef]

Sartorius, B.

B. Sartorius, M. Mohrle, U. Feiste, “12-64 GHz continuous frequency tuning in self-pulsating 1.55-mm multiquantum-well DFB lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 535–538 (1995).
[CrossRef]

Schneider, G. J.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photon. 7(2), 118–122 (2013).
[CrossRef]

Schuetz, C. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photon. 7(2), 118–122 (2013).
[CrossRef]

Seeds, A. J.

Shi, S.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photon. 7(2), 118–122 (2013).
[CrossRef]

Shin, J.

Sim, E.

Simonis, G. J.

G. J. Simonis, K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990).
[CrossRef]

Simpson, T. B.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A 51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

V. Kovanis, A. Gavrielides, T. B. Simpson, J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett. 67(19), 2780–2782 (1995).
[CrossRef]

J.-M. Liu, T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[CrossRef]

T. B. Simpson, J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four‐wave mixing in Fabry–Perot semiconductor lasers,” J. Appl. Phys. 73(5), 2587–2589 (1993).
[CrossRef]

Sorel, M.

M. Zanola, M. J. Strain, G. Giuliani, M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

Strain, M. J.

M. Zanola, M. J. Strain, G. Giuliani, M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

Sun, C.

Sung, H.-K.

H.-K. Sung, E. K. Lau, M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

Svilans, M.

C. Laperle, M. Svilans, M. Poirier, M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microwave Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Tang, S.

J.-M. Liu, H.-F. Chen, S. Tang, “Synchronized chaotic optical communications at high bit rates,” IEEE J. Quantum Electron. 38, 1184–1196 (2002).

Tetu, M.

C. Laperle, M. Svilans, M. Poirier, M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microwave Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

Tseng, H.-R.

C.-Y. Chien, Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, H.-R. Tseng, C.-C. Lin, “Compact photonic integrated chip for tunable microwave generation,” IEEE Photon. Technol. Lett. 26(5), 490–493 (2014).
[CrossRef]

van Dijk, F.

Villanueva, G. E.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22(4), 254–256 (2010).
[CrossRef]

G. E. Villanueva, J. Palací, J. L. Cruz, M. V. Andrés, J. Martí, P. Pérez-Millán, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability,” Opt. Commun. 283(24), 5165–5168 (2010).
[CrossRef]

Wang, W.

Wang, X.

X. Wang, W. Mao, M. Al-Mumin, S. Pappert, H. Jin, L. Guifang, “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett. 11(10), 1292–1294 (1999).
[CrossRef]

Wright, J. B.

Wu, M. C.

H.-K. Sung, E. K. Lau, M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

Wu, Y.-C.

C.-Y. Chien, Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, H.-R. Tseng, C.-C. Lin, “Compact photonic integrated chip for tunable microwave generation,” IEEE Photon. Technol. Lett. 26(5), 490–493 (2014).
[CrossRef]

Xiaoxue, Z.

L. Chrostowski, Z. Xiaoxue, C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microwave Theory Tech. 54(2), 788–796 (2006).
[CrossRef]

Xiong, B.

Yang, K.

Yao, J.

Yee, D.-S.

Zanola, M.

M. Zanola, M. J. Strain, G. Giuliani, M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

Zhang, C.

Zhu, H.

Appl. Phys. Lett.

K. Inoue, T. Mukai, T. Saitoh, “Nearly degenerate four‐wave mixing in a traveling‐wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
[CrossRef]

V. Kovanis, A. Gavrielides, T. B. Simpson, J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett. 67(19), 2780–2782 (1995).
[CrossRef]

Electron. Lett.

Y. Kotaki, S. Ogita, M. Matsuda, Y. Kuwahara, H. Ishikawa, “Tunable, narrow-linewidth and high-power lambda /4-shifted DFB laser,” Electron. Lett. 25(15), 990–992 (1989).
[CrossRef]

IEEE J. Quantum Electron.

J.-M. Liu, T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[CrossRef]

I. Petitbon, P. Gallion, G. Debarge, C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).

F. Mogensen, H. Olesen, G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).

J.-M. Liu, H.-F. Chen, S. Tang, “Synchronized chaotic optical communications at high bit rates,” IEEE J. Quantum Electron. 38, 1184–1196 (2002).

A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).

IEEE J. Sel. Top. Quantum Electron.

X.-Q. Qi, J.-M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[CrossRef]

B. Sartorius, M. Mohrle, U. Feiste, “12-64 GHz continuous frequency tuning in self-pulsating 1.55-mm multiquantum-well DFB lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 535–538 (1995).
[CrossRef]

M. Zanola, M. J. Strain, G. Giuliani, M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[CrossRef]

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[CrossRef]

IEEE Photon. J.

Y.-S. Juan, F.-Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22(4), 254–256 (2010).
[CrossRef]

C.-Y. Chien, Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, H.-R. Tseng, C.-C. Lin, “Compact photonic integrated chip for tunable microwave generation,” IEEE Photon. Technol. Lett. 26(5), 490–493 (2014).
[CrossRef]

X. Wang, W. Mao, M. Al-Mumin, S. Pappert, H. Jin, L. Guifang, “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett. 11(10), 1292–1294 (1999).
[CrossRef]

U. Feiste, D. J. As, A. Ehrhardt, “18 GHz all-optical frequency locking and clock recovery using a self-pulsating two-section DFB-laser,” IEEE Photon. Technol. Lett. 6(1), 106–108 (1994).
[CrossRef]

H.-K. Sung, E. K. Lau, M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

G. J. Simonis, K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

L. Chrostowski, Z. Xiaoxue, C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microwave Theory Tech. 54(2), 788–796 (2006).
[CrossRef]

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

C. Laperle, M. Svilans, M. Poirier, M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microwave Theory Tech. 47(7), 1219–1224 (1999).
[CrossRef]

J. Appl. Phys.

T. B. Simpson, J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four‐wave mixing in Fabry–Perot semiconductor lasers,” J. Appl. Phys. 73(5), 2587–2589 (1993).
[CrossRef]

J. Lightwave Technol.

Laser Photon. Rev.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[CrossRef]

Nat. Photon.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photon. 7(2), 118–122 (2013).
[CrossRef]

Opt. Commun.

G. E. Villanueva, J. Palací, J. L. Cruz, M. V. Andrés, J. Martí, P. Pérez-Millán, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability,” Opt. Commun. 283(24), 5165–5168 (2010).
[CrossRef]

Opt. Express

D. Liu, C. Sun, B. Xiong, Y. Luo, “Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation,” Opt. Express 21(2), 2444–2451 (2013).
[CrossRef] [PubMed]

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
[CrossRef] [PubMed]

M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express 20(2), 1769–1774 (2012).
[CrossRef] [PubMed]

N. Kim, S.-P. Han, H.-C. Ryu, H. Ko, J.-W. Park, D. Lee, M. Y. Jeon, K. H. Park, “Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation,” Opt. Express 20(16), 17496–17502 (2012).
[CrossRef] [PubMed]

N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express 17(16), 13851–13859 (2009).
[CrossRef] [PubMed]

N. A. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, L. F. Lester, “Two-color multi-section quantum dot distributed feedback laser,” Opt. Express 18(26), 27028–27035 (2010).
[CrossRef] [PubMed]

J. Huang, C. Sun, B. Xiong, Y. Luo, “Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking,” Opt. Express 17(23), 20727–20734 (2009).
[CrossRef] [PubMed]

S.-C. Chan, S.-K. Hwang, J.-M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

J. Sacher, D. Baums, P. Panknin, W. Elsässer, E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A 51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

Other

M. Soldo, N. Gibbons, and G. Giuliani, “Narrow linewidth mm-wave signal generation based on two phase-locked DFB lasers mutually coupled via four wave mixing,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (Optical Society of America, Baltimore, Maryland, 2009), p. JThE32.
[CrossRef]

C.-C. Lin, C.-Y. Chien, Y.-C. Wu, H.-C. Kuo, and C.-T. Lin, “Evaluation of tunable microwave signals generated by monolithic two-section distributed feedback lasers,” in CLEO: 2013 (Optical Society of America, San Jose, California, 2013), p. JTh2A.104.

C.-C. Lin, G. Yoffe, M. Emanuel, S. Rishton, D. Ton, S. Zou, B. Lu, and B. Pezeshki, “Monolithically integrated high speed DFB BH laser arrays for 10Gbbased LX4 application,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, Anaheim, California, 2006), p. OWI84.

G. Carpintero, K. Balakier, Z. Yang, R. C. Guzman, A. Corradi, A. Jimenez, G. Kervella, M. J. Fice, M. Lamponi, M. Chtioui, F. van Dijk, C. C. Renaud, A. Wonfor, E. A. J. M. Bente, R. V. Penty, I. H. White, and A. J. Seeds, “Photonic integrated circuits for millimeter-wave wireless communications,” J. Lightwave Technol. (2014).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The schematic diagram of a monolithic two-section DBR DFB laser.

Fig. 2
Fig. 2

The simplified operational principle of a two-section single mode laser for microwave generation in the optical heterodyne. The corresponding microwave spectrum is listed side by side with its optical counterpart.

Fig. 3
Fig. 3

Measurement setup for both microwave and optical spectrum. Suitable in-line isolators were used in the connecting optical fibers to prevent from back scattering.

Fig. 4
Fig. 4

The combined optical spectrum from the output facet of the slave laser, under different conditions: Islave = 50mA, Imaster = 16mA (blue), and Islave = 50mA, Imaster = 72mA (red). The corresponding emission peaks of the slave and master lasers are marked for clarity.

Fig. 5
Fig. 5

The collection of optical spectrum of the two-section DFB lasers at Islave = 50mA and various Imaster. The color bar represents the relative intensity measured in dBm, and the white dash line marks the trace of the emission peak of the slave laser. The dash-dot line is from the peak of the master laser and the dot line is the FWM signal.

Fig. 6
Fig. 6

(a)The single mode microwave spectrum read by Agilent N9030A showing the continuous tuning. (b) The development of different states from multi-mode to chaos under different master currents. (c)The detailed single mode spectrum. The blue dots are measured data and the red curve is the fitted Lorentzian function.

Fig. 7
Fig. 7

(a) The measured peak frequencies (in GHz); (b) max RF power (in dBm) under different driving currents of the slave and master lasers. The colors of the contour plots indicate the corresponding intensities showing in the color bar.

Fig. 8
Fig. 8

The dynamic behavior map of the two-section laser at the same current combination as in Fig. 7. The colors represent the mode of operation judged by RF and optical spectrum.

Fig. 9
Fig. 9

The measured (blue dots) and fitted (red lines) results of (a) the power ratio of FWM and regenerative amplified peak; (b) RF power; both at the Islave = 58mA, and Imaster = 16 to 80mA. The frequency detuning is used as the variable. When the detuning diminishes towards zero, the strong chaotic behavior of the laser cause the spreading of the experimental data.

Fig. 10
Fig. 10

The tuning range and peak RF power calculated by Eq. (3) and based on the extracted parameters in Table 1.

Tables (1)

Tables Icon

Table 1 Parameter extraction from a dual-wavelength DFB laser

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δf=c( 1 λ master 1 λ slave ),
| A f A r | 2 = ( Ω 2 γ p 2 + Ω r 4 )( 1+ b 2 ) /4 ( Ω 2 Ω r 2 /2bΩ γ p /2 ) 2 + ( Ω γ r Ω γ p /2 b Ω r 2 /2 ) 2 ,
σ 2 = | η A i A 0 | 2 Ω 2 + ( γ r γ p ) 2 ( Ω 2 Ω r 2 ) 2 + Ω 2 γ r 2 ,

Metrics