Abstract

Knowledge on absorption by colored dissolved organic matter, acdom, spatio-temporal variability in coastal areas is of fundamental importance in many field of researches related to biogeochemical cycles studies, coastal areas management, as well as land and water interactions in the coastal domain. A new method, based on the theoretical link between the vertical attenuation coefficient, Kd, and the absorption coefficient, has been developed to assess acdom. This method, confirmed from radiative transfer simulations and in situ measurements, and tested on an independent in situ data set (N = 126), allows acdom to be assessed with a Mean Relative Absolute Difference, MRAD, of 33% over two order of magnitude (from 0.01 to 1.16 m−1). In the frame of ocean color observation, Kd is not directly measured but estimated from the remote sensing reflectance, Rrs. Based on 109 satellite (SeaWiFS) and in situ coincident (i.e. match-up) data points acdom is retrieved with a MRAD value of 37%. This simple model generally presents slightly better performances than recently developed empirical or semi-analytical algorithms.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Academic, 1994).
  2. N. V. Blough and R. Del Vecchio, “Chromophoric DOM in the coastal environment,” in Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell and C. A. Carslon, ed. (Academic, 2002).
  3. V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1–2), 201–212 (2007).
    [CrossRef]
  4. A. Mannino, M. Russ, S. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the US Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
    [CrossRef]
  5. C. E. Del Castillo, “Remote Sensing of Colored Dissolved Organic Matter in Coastal Environments,” in Remote Sensing of Aquatic Coastal Environments, R. M. Miller, C. E. Del Castillo, and B. McKee, ed. (Academic, 2004).
  6. C. Fichot, R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
    [CrossRef]
  7. K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products,” J. Geophys. Res. 96(C11), 20599–20611 (1991).
    [CrossRef]
  8. D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett. 32(20), L20605 (2005), doi:.
    [CrossRef]
  9. A. Morel, B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ. 113(5), 998–1011 (2009), doi:.
    [CrossRef]
  10. C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development,” Remote Sens. Environ. 112(12), 4186–4203 (2008), doi:.
    [CrossRef]
  11. L. Hubert, B. Lubac, D. Dessailly, L. Duforêt-Gaurier, V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express 18(20), 20949–20959 (2010).
    [CrossRef] [PubMed]
  12. Z. P. Lee, K. L. Carder, R. A. Arnone, “Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
    [CrossRef] [PubMed]
  13. S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102(C8), 18607–18625 (1997).
    [CrossRef]
  14. S. Maritorena, D. A. Siegel, A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
    [CrossRef] [PubMed]
  15. D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
    [CrossRef]
  16. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003), doi:.
    [CrossRef]
  17. E. J. D’Sa, R. L. Miller, C. Del Castillo, “Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front,” Appl. Opt. 45(28), 7410–7428 (2006).
    [CrossRef] [PubMed]
  18. E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
    [CrossRef]
  19. S. P. Tiwari, P. Shanmugam, “An optical model for the remote sensing of coloured dissolved organic matter in coastal/ocean waters,” Estuar. Coast. Shelf Sci. 93(4), 396–402 (2011).
    [CrossRef]
  20. S. Bélanger, M. Babin, P. Larouche, “An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters,” J. Geophys. Res. 113(C4), C04027 (2008), doi:.
    [CrossRef]
  21. H. Loisel, D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39(18), 3001–3011 (2000).
    [CrossRef] [PubMed]
  22. Q. Dong, S. Shang, Z. P. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
    [CrossRef]
  23. A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
    [CrossRef]
  24. IOCCG, “Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications,” in Reports of the International Ocean-Colour Coordinating Group, 5, Z. P. Lee, ed. IOCCG, Dartmouth, (2006).
  25. P. J. Werdell, S. W. Bailey, “An improved in situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
    [CrossRef]
  26. B. Lubac, H. Loisel, N. Guiselin, R. Astoreca, L. F. Artigas, X. Mériaux, “Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters,” J. Geophys. Res. 113, C06026 (2008), doi:.
    [CrossRef]
  27. H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).
  28. V. Vantrepotte, H. Loisel, D. Dessailly, X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012), doi:.
    [CrossRef]
  29. J. T. O. Kirk, “Monte Carlo study of the nature of the under- water light field in, and the relationships between optical properties of, turbid yellow waters,” Aust. J. Mar. Freshwater Res. 32(4), 517–532 (1981).
    [CrossRef]
  30. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
    [CrossRef]
  31. J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36(3), 455–467 (1991).
    [CrossRef]
  32. H. R. Gordon, “Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water,” Limnol. Oceanogr. 34(8), 1389–1409 (1989).
    [CrossRef]
  33. A. Morel, H. Loisel, “Apparent Optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt. 37(21), 4765–4776 (1998).
    [CrossRef] [PubMed]
  34. H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14(2), 413–416 (1975).
    [CrossRef] [PubMed]
  35. S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing,” J. Geophys. Res. 93(C8), 9270–9280 (1988).
    [CrossRef]
  36. Z. P. Lee, K. Du, R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110, C02016 (2005), doi:.
    [CrossRef]
  37. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 water),” J. Geophys. Res. 93(C9), 10,749–10,768 (1988).
    [CrossRef]
  38. A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
    [CrossRef]
  39. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
    [CrossRef]
  40. T. Zhang, F. Fell, Z. S. Liu, R. Preusker, J. Fischer, M. X. He, “Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in case I waters,” J. Geophys. Res. 108(C9), 3286 (2003), doi:.
    [CrossRef]
  41. http://oceancolor.gsfc.nasa.gov/REPROCESSING/SeaWiFS/R5.1/k490_update.html .
  42. C. Jamet, H. Loisel, D. Dessailly, “Retrieval of the spectral diffuse attenuation coefficient Kd(λ) in open and coastal ocean waters using a neural network inversion,” J. Geophys. Res. 117(C10), C10023 (2012), doi:.
    [CrossRef]
  43. K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27(3), 500–509 (1982).
    [CrossRef]
  44. M. S. Twardowski, E. Boss, J. M. Sullivan, P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89(1-4), 69–88 (2004), doi:.
    [CrossRef]
  45. D. Jolivet, D. Ramon, P.-Y. Deschamps, F. Steinmetz, B. Fougnie, P. Henry, “How the ocean color products is limited by atmospheric correction,” in Proceedings of Envisat Symposium 2007, Montreux, Switzerland (2007).
  46. C. Hu, L. Feng, Z.-P. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
    [CrossRef] [PubMed]
  47. C. Jamet, H. Loisel, C. P. Kuchinke, K. Ruddick, G. Zibordi, H. Feng, “Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements,” Remote Sens. Environ. 115(8), 1955–1965 (2011).
    [CrossRef]
  48. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  49. R. J. Hyndman, Y. Fan, “Sample Quantiles in Statistical Packages,” Am. Stat. 50(4), 361–365 (1996).
  50. B. Lubac, H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
    [CrossRef]
  51. ESA-report, (ESA, 2012). http://earth.eo.esa.int/pcs/envisat/meris/documentation/meris_3rd_reproc/A879-NT-017ACR_v1.0.pdf .

2013 (2)

Q. Dong, S. Shang, Z. P. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
[CrossRef]

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[CrossRef]

2012 (4)

V. Vantrepotte, H. Loisel, D. Dessailly, X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012), doi:.
[CrossRef]

C. Fichot, R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[CrossRef]

C. Jamet, H. Loisel, D. Dessailly, “Retrieval of the spectral diffuse attenuation coefficient Kd(λ) in open and coastal ocean waters using a neural network inversion,” J. Geophys. Res. 117(C10), C10023 (2012), doi:.
[CrossRef]

C. Hu, L. Feng, Z.-P. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[CrossRef] [PubMed]

2011 (3)

C. Jamet, H. Loisel, C. P. Kuchinke, K. Ruddick, G. Zibordi, H. Feng, “Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements,” Remote Sens. Environ. 115(8), 1955–1965 (2011).
[CrossRef]

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

S. P. Tiwari, P. Shanmugam, “An optical model for the remote sensing of coloured dissolved organic matter in coastal/ocean waters,” Estuar. Coast. Shelf Sci. 93(4), 396–402 (2011).
[CrossRef]

2010 (1)

2009 (2)

A. Morel, B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ. 113(5), 998–1011 (2009), doi:.
[CrossRef]

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).

2008 (4)

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development,” Remote Sens. Environ. 112(12), 4186–4203 (2008), doi:.
[CrossRef]

A. Mannino, M. Russ, S. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the US Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
[CrossRef]

S. Bélanger, M. Babin, P. Larouche, “An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters,” J. Geophys. Res. 113(C4), C04027 (2008), doi:.
[CrossRef]

B. Lubac, H. Loisel, N. Guiselin, R. Astoreca, L. F. Artigas, X. Mériaux, “Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters,” J. Geophys. Res. 113, C06026 (2008), doi:.
[CrossRef]

2007 (2)

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1–2), 201–212 (2007).
[CrossRef]

B. Lubac, H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[CrossRef]

2006 (1)

2005 (3)

Z. P. Lee, K. Du, R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110, C02016 (2005), doi:.
[CrossRef]

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett. 32(20), L20605 (2005), doi:.
[CrossRef]

P. J. Werdell, S. W. Bailey, “An improved in situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[CrossRef]

2004 (1)

M. S. Twardowski, E. Boss, J. M. Sullivan, P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89(1-4), 69–88 (2004), doi:.
[CrossRef]

2003 (2)

T. Zhang, F. Fell, Z. S. Liu, R. Preusker, J. Fischer, M. X. He, “Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in case I waters,” J. Geophys. Res. 108(C9), 3286 (2003), doi:.
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003), doi:.
[CrossRef]

2002 (3)

2001 (1)

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

2000 (1)

1998 (1)

1997 (1)

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102(C8), 18607–18625 (1997).
[CrossRef]

1996 (1)

R. J. Hyndman, Y. Fan, “Sample Quantiles in Statistical Packages,” Am. Stat. 50(4), 361–365 (1996).

1991 (2)

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36(3), 455–467 (1991).
[CrossRef]

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products,” J. Geophys. Res. 96(C11), 20599–20611 (1991).
[CrossRef]

1989 (1)

H. R. Gordon, “Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water,” Limnol. Oceanogr. 34(8), 1389–1409 (1989).
[CrossRef]

1988 (2)

S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing,” J. Geophys. Res. 93(C8), 9270–9280 (1988).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 water),” J. Geophys. Res. 93(C9), 10,749–10,768 (1988).
[CrossRef]

1984 (1)

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
[CrossRef]

1982 (1)

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27(3), 500–509 (1982).
[CrossRef]

1981 (1)

J. T. O. Kirk, “Monte Carlo study of the nature of the under- water light field in, and the relationships between optical properties of, turbid yellow waters,” Aust. J. Mar. Freshwater Res. 32(4), 517–532 (1981).
[CrossRef]

1977 (1)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[CrossRef]

1975 (1)

Ahn, Y.-H.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Arnone, R.

Z. P. Lee, K. Du, R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110, C02016 (2005), doi:.
[CrossRef]

Arnone, R. A.

Artigas, L. F.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).

B. Lubac, H. Loisel, N. Guiselin, R. Astoreca, L. F. Artigas, X. Mériaux, “Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters,” J. Geophys. Res. 113, C06026 (2008), doi:.
[CrossRef]

Astoreca, R.

B. Lubac, H. Loisel, N. Guiselin, R. Astoreca, L. F. Artigas, X. Mériaux, “Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters,” J. Geophys. Res. 113, C06026 (2008), doi:.
[CrossRef]

Babin, M.

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[CrossRef]

S. Bélanger, M. Babin, P. Larouche, “An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters,” J. Geophys. Res. 113(C4), C04027 (2008), doi:.
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003), doi:.
[CrossRef]

Bailey, S. W.

P. J. Werdell, S. W. Bailey, “An improved in situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[CrossRef]

Baker, K. A.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products,” J. Geophys. Res. 96(C11), 20599–20611 (1991).
[CrossRef]

Baker, K. S.

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27(3), 500–509 (1982).
[CrossRef]

Behrenfeld, M. J.

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett. 32(20), L20605 (2005), doi:.
[CrossRef]

Bélanger, S.

S. Bélanger, M. Babin, P. Larouche, “An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters,” J. Geophys. Res. 113(C4), C04027 (2008), doi:.
[CrossRef]

Benner, R.

C. Fichot, R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[CrossRef]

Boss, E.

M. S. Twardowski, E. Boss, J. M. Sullivan, P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89(1-4), 69–88 (2004), doi:.
[CrossRef]

Bricaud, A.

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003), doi:.
[CrossRef]

Brown, C. A.

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development,” Remote Sens. Environ. 112(12), 4186–4203 (2008), doi:.
[CrossRef]

Brunet, C.

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1–2), 201–212 (2007).
[CrossRef]

Caillaud, J.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).

Carder, K. L.

Z. P. Lee, K. L. Carder, R. A. Arnone, “Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[CrossRef] [PubMed]

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products,” J. Geophys. Res. 96(C11), 20599–20611 (1991).
[CrossRef]

Chiang, C.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Claustre, H.

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development,” Remote Sens. Environ. 112(12), 4186–4203 (2008), doi:.
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003), doi:.
[CrossRef]

D’Sa, E. J.

Davis, C. O.

Del Castillo, C.

Deschamps, P.-Y.

D. Jolivet, D. Ramon, P.-Y. Deschamps, F. Steinmetz, B. Fougnie, P. Henry, “How the ocean color products is limited by atmospheric correction,” in Proceedings of Envisat Symposium 2007, Montreux, Switzerland (2007).

Dessailly, D.

V. Vantrepotte, H. Loisel, D. Dessailly, X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012), doi:.
[CrossRef]

C. Jamet, H. Loisel, D. Dessailly, “Retrieval of the spectral diffuse attenuation coefficient Kd(λ) in open and coastal ocean waters using a neural network inversion,” J. Geophys. Res. 117(C10), C10023 (2012), doi:.
[CrossRef]

L. Hubert, B. Lubac, D. Dessailly, L. Duforêt-Gaurier, V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express 18(20), 20949–20959 (2010).
[CrossRef] [PubMed]

Donaghay, P. L.

M. S. Twardowski, E. Boss, J. M. Sullivan, P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89(1-4), 69–88 (2004), doi:.
[CrossRef]

Dong, Q.

Q. Dong, S. Shang, Z. P. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
[CrossRef]

Du, K.

Z. P. Lee, K. Du, R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110, C02016 (2005), doi:.
[CrossRef]

Duforêt-Gaurier, L.

Fan, Y.

R. J. Hyndman, Y. Fan, “Sample Quantiles in Statistical Packages,” Am. Stat. 50(4), 361–365 (1996).

Fell, F.

T. Zhang, F. Fell, Z. S. Liu, R. Preusker, J. Fischer, M. X. He, “Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in case I waters,” J. Geophys. Res. 108(C9), 3286 (2003), doi:.
[CrossRef]

Feng, H.

C. Jamet, H. Loisel, C. P. Kuchinke, K. Ruddick, G. Zibordi, H. Feng, “Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements,” Remote Sens. Environ. 115(8), 1955–1965 (2011).
[CrossRef]

Feng, L.

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003), doi:.
[CrossRef]

Fichot, C.

C. Fichot, R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[CrossRef]

Fischer, J.

T. Zhang, F. Fell, Z. S. Liu, R. Preusker, J. Fischer, M. X. He, “Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in case I waters,” J. Geophys. Res. 108(C9), 3286 (2003), doi:.
[CrossRef]

Fougnie, B.

D. Jolivet, D. Ramon, P.-Y. Deschamps, F. Steinmetz, B. Fougnie, P. Henry, “How the ocean color products is limited by atmospheric correction,” in Proceedings of Envisat Symposium 2007, Montreux, Switzerland (2007).

Franz, B. A.

Gardel, A.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).

Garver, S. A.

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102(C8), 18607–18625 (1997).
[CrossRef]

Gentili, B.

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[CrossRef]

A. Morel, B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ. 113(5), 998–1011 (2009), doi:.
[CrossRef]

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development,” Remote Sens. Environ. 112(12), 4186–4203 (2008), doi:.
[CrossRef]

Gordon, H. R.

H. R. Gordon, “Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water,” Limnol. Oceanogr. 34(8), 1389–1409 (1989).
[CrossRef]

H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14(2), 413–416 (1975).
[CrossRef] [PubMed]

Guiselin, N.

B. Lubac, H. Loisel, N. Guiselin, R. Astoreca, L. F. Artigas, X. Mériaux, “Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters,” J. Geophys. Res. 113, C06026 (2008), doi:.
[CrossRef]

Hansell, D. A.

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[CrossRef]

Hawes, S. K.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products,” J. Geophys. Res. 96(C11), 20599–20611 (1991).
[CrossRef]

He, M. X.

T. Zhang, F. Fell, Z. S. Liu, R. Preusker, J. Fischer, M. X. He, “Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in case I waters,” J. Geophys. Res. 108(C9), 3286 (2003), doi:.
[CrossRef]

Henry, P.

D. Jolivet, D. Ramon, P.-Y. Deschamps, F. Steinmetz, B. Fougnie, P. Henry, “How the ocean color products is limited by atmospheric correction,” in Proceedings of Envisat Symposium 2007, Montreux, Switzerland (2007).

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003), doi:.
[CrossRef]

Hooker, S.

A. Mannino, M. Russ, S. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the US Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
[CrossRef]

Hooker, S. B.

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[CrossRef]

Hu, C.

Hubert, L.

Huot, Y.

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development,” Remote Sens. Environ. 112(12), 4186–4203 (2008), doi:.
[CrossRef]

Hyndman, R. J.

R. J. Hyndman, Y. Fan, “Sample Quantiles in Statistical Packages,” Am. Stat. 50(4), 361–365 (1996).

Ishizaka, J.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Jamet, C.

C. Jamet, H. Loisel, D. Dessailly, “Retrieval of the spectral diffuse attenuation coefficient Kd(λ) in open and coastal ocean waters using a neural network inversion,” J. Geophys. Res. 117(C10), C10023 (2012), doi:.
[CrossRef]

C. Jamet, H. Loisel, C. P. Kuchinke, K. Ruddick, G. Zibordi, H. Feng, “Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements,” Remote Sens. Environ. 115(8), 1955–1965 (2011).
[CrossRef]

Jolivet, D.

D. Jolivet, D. Ramon, P.-Y. Deschamps, F. Steinmetz, B. Fougnie, P. Henry, “How the ocean color products is limited by atmospheric correction,” in Proceedings of Envisat Symposium 2007, Montreux, Switzerland (2007).

Kawamura, H.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Kim, S.-W.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Kirk, J. T. O.

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36(3), 455–467 (1991).
[CrossRef]

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
[CrossRef]

J. T. O. Kirk, “Monte Carlo study of the nature of the under- water light field in, and the relationships between optical properties of, turbid yellow waters,” Aust. J. Mar. Freshwater Res. 32(4), 517–532 (1981).
[CrossRef]

Kiyomoto, Y.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Kuchinke, C. P.

C. Jamet, H. Loisel, C. P. Kuchinke, K. Ruddick, G. Zibordi, H. Feng, “Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements,” Remote Sens. Environ. 115(8), 1955–1965 (2011).
[CrossRef]

Larouche, P.

S. Bélanger, M. Babin, P. Larouche, “An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters,” J. Geophys. Res. 113(C4), C04027 (2008), doi:.
[CrossRef]

Lécuyer, E.

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1–2), 201–212 (2007).
[CrossRef]

Lee, Z. P.

Q. Dong, S. Shang, Z. P. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
[CrossRef]

Z. P. Lee, K. Du, R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110, C02016 (2005), doi:.
[CrossRef]

Z. P. Lee, K. L. Carder, R. A. Arnone, “Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[CrossRef] [PubMed]

Lee, Z.-P.

Lesourd, S.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).

Liu, Z. S.

T. Zhang, F. Fell, Z. S. Liu, R. Preusker, J. Fischer, M. X. He, “Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in case I waters,” J. Geophys. Res. 108(C9), 3286 (2003), doi:.
[CrossRef]

Loisel, H.

C. Jamet, H. Loisel, D. Dessailly, “Retrieval of the spectral diffuse attenuation coefficient Kd(λ) in open and coastal ocean waters using a neural network inversion,” J. Geophys. Res. 117(C10), C10023 (2012), doi:.
[CrossRef]

V. Vantrepotte, H. Loisel, D. Dessailly, X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012), doi:.
[CrossRef]

C. Jamet, H. Loisel, C. P. Kuchinke, K. Ruddick, G. Zibordi, H. Feng, “Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements,” Remote Sens. Environ. 115(8), 1955–1965 (2011).
[CrossRef]

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).

B. Lubac, H. Loisel, N. Guiselin, R. Astoreca, L. F. Artigas, X. Mériaux, “Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters,” J. Geophys. Res. 113, C06026 (2008), doi:.
[CrossRef]

B. Lubac, H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[CrossRef]

H. Loisel, D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39(18), 3001–3011 (2000).
[CrossRef] [PubMed]

A. Morel, H. Loisel, “Apparent Optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt. 37(21), 4765–4776 (1998).
[CrossRef] [PubMed]

Lubac, B.

L. Hubert, B. Lubac, D. Dessailly, L. Duforêt-Gaurier, V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express 18(20), 20949–20959 (2010).
[CrossRef] [PubMed]

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).

B. Lubac, H. Loisel, N. Guiselin, R. Astoreca, L. F. Artigas, X. Mériaux, “Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters,” J. Geophys. Res. 113, C06026 (2008), doi:.
[CrossRef]

B. Lubac, H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[CrossRef]

Mannino, A.

C. Hu, L. Feng, Z.-P. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[CrossRef] [PubMed]

A. Mannino, M. Russ, S. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the US Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
[CrossRef]

Maritorena, S.

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett. 32(20), L20605 (2005), doi:.
[CrossRef]

S. Maritorena, D. A. Siegel, A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[CrossRef] [PubMed]

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[CrossRef]

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

Matsuoka, A.

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[CrossRef]

McClain, C. R.

C. Hu, L. Feng, Z.-P. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[CrossRef] [PubMed]

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett. 32(20), L20605 (2005), doi:.
[CrossRef]

McCluney, W. R.

Mériaux, X.

V. Vantrepotte, H. Loisel, D. Dessailly, X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012), doi:.
[CrossRef]

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).

B. Lubac, H. Loisel, N. Guiselin, R. Astoreca, L. F. Artigas, X. Mériaux, “Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters,” J. Geophys. Res. 113, C06026 (2008), doi:.
[CrossRef]

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1–2), 201–212 (2007).
[CrossRef]

Miller, R. L.

Mitchell, B. G.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products,” J. Geophys. Res. 96(C11), 20599–20611 (1991).
[CrossRef]

Morel, A.

A. Morel, B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ. 113(5), 998–1011 (2009), doi:.
[CrossRef]

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

A. Morel, H. Loisel, “Apparent Optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt. 37(21), 4765–4776 (1998).
[CrossRef] [PubMed]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 water),” J. Geophys. Res. 93(C9), 10,749–10,768 (1988).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[CrossRef]

Nelson, N. B.

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett. 32(20), L20605 (2005), doi:.
[CrossRef]

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[CrossRef]

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003), doi:.
[CrossRef]

Peterson, A. R.

Platt, T.

S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing,” J. Geophys. Res. 93(C8), 9270–9280 (1988).
[CrossRef]

Poteau, A.

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).

Preusker, R.

T. Zhang, F. Fell, Z. S. Liu, R. Preusker, J. Fischer, M. X. He, “Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in case I waters,” J. Geophys. Res. 108(C9), 3286 (2003), doi:.
[CrossRef]

Prieur, L.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[CrossRef]

Ramon, D.

D. Jolivet, D. Ramon, P.-Y. Deschamps, F. Steinmetz, B. Fougnie, P. Henry, “How the ocean color products is limited by atmospheric correction,” in Proceedings of Envisat Symposium 2007, Montreux, Switzerland (2007).

Ruddick, K.

C. Jamet, H. Loisel, C. P. Kuchinke, K. Ruddick, G. Zibordi, H. Feng, “Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements,” Remote Sens. Environ. 115(8), 1955–1965 (2011).
[CrossRef]

Russ, M.

A. Mannino, M. Russ, S. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the US Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
[CrossRef]

Santer, R.

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1–2), 201–212 (2007).
[CrossRef]

Sathyendranath, S.

S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing,” J. Geophys. Res. 93(C8), 9270–9280 (1988).
[CrossRef]

Shang, S.

Q. Dong, S. Shang, Z. P. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
[CrossRef]

Shanmugam, P.

S. P. Tiwari, P. Shanmugam, “An optical model for the remote sensing of coloured dissolved organic matter in coastal/ocean waters,” Estuar. Coast. Shelf Sci. 93(4), 396–402 (2011).
[CrossRef]

Siegel, D. A.

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett. 32(20), L20605 (2005), doi:.
[CrossRef]

S. Maritorena, D. A. Siegel, A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[CrossRef] [PubMed]

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[CrossRef]

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102(C8), 18607–18625 (1997).
[CrossRef]

Siswanto, E.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Smith, R. C.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products,” J. Geophys. Res. 96(C11), 20599–20611 (1991).
[CrossRef]

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27(3), 500–509 (1982).
[CrossRef]

Steinmetz, F.

D. Jolivet, D. Ramon, P.-Y. Deschamps, F. Steinmetz, B. Fougnie, P. Henry, “How the ocean color products is limited by atmospheric correction,” in Proceedings of Envisat Symposium 2007, Montreux, Switzerland (2007).

Steward, R. G.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products,” J. Geophys. Res. 96(C11), 20599–20611 (1991).
[CrossRef]

Stramski, D.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003), doi:.
[CrossRef]

H. Loisel, D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39(18), 3001–3011 (2000).
[CrossRef] [PubMed]

Sullivan, J. M.

M. S. Twardowski, E. Boss, J. M. Sullivan, P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89(1-4), 69–88 (2004), doi:.
[CrossRef]

Tang, J.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Tiwari, S. P.

S. P. Tiwari, P. Shanmugam, “An optical model for the remote sensing of coloured dissolved organic matter in coastal/ocean waters,” Estuar. Coast. Shelf Sci. 93(4), 396–402 (2011).
[CrossRef]

Twardowski, M. S.

M. S. Twardowski, E. Boss, J. M. Sullivan, P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89(1-4), 69–88 (2004), doi:.
[CrossRef]

Vantrepotte, V.

V. Vantrepotte, H. Loisel, D. Dessailly, X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012), doi:.
[CrossRef]

L. Hubert, B. Lubac, D. Dessailly, L. Duforêt-Gaurier, V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express 18(20), 20949–20959 (2010).
[CrossRef] [PubMed]

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1–2), 201–212 (2007).
[CrossRef]

Vellucci, V.

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1–2), 201–212 (2007).
[CrossRef]

Werdell, P. J.

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development,” Remote Sens. Environ. 112(12), 4186–4203 (2008), doi:.
[CrossRef]

P. J. Werdell, S. W. Bailey, “An improved in situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[CrossRef]

Yamada, K.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Yamaguchi, H.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Yoo, S.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Zhang, T.

T. Zhang, F. Fell, Z. S. Liu, R. Preusker, J. Fischer, M. X. He, “Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in case I waters,” J. Geophys. Res. 108(C9), 3286 (2003), doi:.
[CrossRef]

Zibordi, G.

C. Jamet, H. Loisel, C. P. Kuchinke, K. Ruddick, G. Zibordi, H. Feng, “Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements,” Remote Sens. Environ. 115(8), 1955–1965 (2011).
[CrossRef]

Am. Stat. (1)

R. J. Hyndman, Y. Fan, “Sample Quantiles in Statistical Packages,” Am. Stat. 50(4), 361–365 (1996).

Appl. Opt. (7)

C. Hu, L. Feng, Z.-P. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, R. A. Arnone, “Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[CrossRef] [PubMed]

S. Maritorena, D. A. Siegel, A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[CrossRef] [PubMed]

E. J. D’Sa, R. L. Miller, C. Del Castillo, “Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front,” Appl. Opt. 45(28), 7410–7428 (2006).
[CrossRef] [PubMed]

H. Loisel, D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39(18), 3001–3011 (2000).
[CrossRef] [PubMed]

A. Morel, H. Loisel, “Apparent Optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt. 37(21), 4765–4776 (1998).
[CrossRef] [PubMed]

H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14(2), 413–416 (1975).
[CrossRef] [PubMed]

Aust. J. Mar. Freshwater Res. (1)

J. T. O. Kirk, “Monte Carlo study of the nature of the under- water light field in, and the relationships between optical properties of, turbid yellow waters,” Aust. J. Mar. Freshwater Res. 32(4), 517–532 (1981).
[CrossRef]

Biogeosciences (1)

A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013).
[CrossRef]

Estuar. Coast. Shelf Sci. (2)

S. P. Tiwari, P. Shanmugam, “An optical model for the remote sensing of coloured dissolved organic matter in coastal/ocean waters,” Estuar. Coast. Shelf Sci. 93(4), 396–402 (2011).
[CrossRef]

V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1–2), 201–212 (2007).
[CrossRef]

Geophys. Res. Lett. (1)

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett. 32(20), L20605 (2005), doi:.
[CrossRef]

J. Coast. Res. (1)

H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).

J. Geophys. Res. (13)

S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing,” J. Geophys. Res. 93(C8), 9270–9280 (1988).
[CrossRef]

Z. P. Lee, K. Du, R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110, C02016 (2005), doi:.
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 water),” J. Geophys. Res. 93(C9), 10,749–10,768 (1988).
[CrossRef]

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products,” J. Geophys. Res. 96(C11), 20599–20611 (1991).
[CrossRef]

A. Mannino, M. Russ, S. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the US Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
[CrossRef]

S. Bélanger, M. Babin, P. Larouche, “An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters,” J. Geophys. Res. 113(C4), C04027 (2008), doi:.
[CrossRef]

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003), doi:.
[CrossRef]

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102(C8), 18607–18625 (1997).
[CrossRef]

T. Zhang, F. Fell, Z. S. Liu, R. Preusker, J. Fischer, M. X. He, “Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in case I waters,” J. Geophys. Res. 108(C9), 3286 (2003), doi:.
[CrossRef]

C. Jamet, H. Loisel, D. Dessailly, “Retrieval of the spectral diffuse attenuation coefficient Kd(λ) in open and coastal ocean waters using a neural network inversion,” J. Geophys. Res. 117(C10), C10023 (2012), doi:.
[CrossRef]

B. Lubac, H. Loisel, N. Guiselin, R. Astoreca, L. F. Artigas, X. Mériaux, “Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters,” J. Geophys. Res. 113, C06026 (2008), doi:.
[CrossRef]

J. Oceanogr. (1)

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[CrossRef]

Limnol. Oceanogr. (6)

C. Fichot, R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[CrossRef]

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
[CrossRef]

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36(3), 455–467 (1991).
[CrossRef]

H. R. Gordon, “Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water,” Limnol. Oceanogr. 34(8), 1389–1409 (1989).
[CrossRef]

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27(3), 500–509 (1982).
[CrossRef]

Mar. Chem. (1)

M. S. Twardowski, E. Boss, J. M. Sullivan, P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89(1-4), 69–88 (2004), doi:.
[CrossRef]

Opt. Express (1)

Remote Sens. Environ. (7)

P. J. Werdell, S. W. Bailey, “An improved in situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[CrossRef]

V. Vantrepotte, H. Loisel, D. Dessailly, X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012), doi:.
[CrossRef]

Q. Dong, S. Shang, Z. P. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013).
[CrossRef]

A. Morel, B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ. 113(5), 998–1011 (2009), doi:.
[CrossRef]

C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development,” Remote Sens. Environ. 112(12), 4186–4203 (2008), doi:.
[CrossRef]

C. Jamet, H. Loisel, C. P. Kuchinke, K. Ruddick, G. Zibordi, H. Feng, “Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements,” Remote Sens. Environ. 115(8), 1955–1965 (2011).
[CrossRef]

B. Lubac, H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[CrossRef]

Other (8)

ESA-report, (ESA, 2012). http://earth.eo.esa.int/pcs/envisat/meris/documentation/meris_3rd_reproc/A879-NT-017ACR_v1.0.pdf .

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

http://oceancolor.gsfc.nasa.gov/REPROCESSING/SeaWiFS/R5.1/k490_update.html .

D. Jolivet, D. Ramon, P.-Y. Deschamps, F. Steinmetz, B. Fougnie, P. Henry, “How the ocean color products is limited by atmospheric correction,” in Proceedings of Envisat Symposium 2007, Montreux, Switzerland (2007).

C. E. Del Castillo, “Remote Sensing of Colored Dissolved Organic Matter in Coastal Environments,” in Remote Sensing of Aquatic Coastal Environments, R. M. Miller, C. E. Del Castillo, and B. McKee, ed. (Academic, 2004).

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Academic, 1994).

N. V. Blough and R. Del Vecchio, “Chromophoric DOM in the coastal environment,” in Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell and C. A. Carslon, ed. (Academic, 2002).

IOCCG, “Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications,” in Reports of the International Ocean-Colour Coordinating Group, 5, Z. P. Lee, ed. IOCCG, Dartmouth, (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) (Δp(410)- Δp(670)) as a function of (Kd(410)-Kw(410)-(Kdp)-Kwp)) from the DS1 data set and for a sun zenith angle of 0°, 30°, and 60° as indicated. The solid lines are the best polynomial fits established for each sun angle. (b) scatter plot of (Δp(410)- Δp(670)), as retrieved using the polynomial function presented in Fig. 1(a), as a function of the true (Δp(410)- Δp(670)) values from the DS1 data set. The solid line represents the 1:1 line. The panels (c) and (d) are equivalent to panels (a) and (b), respectively, but for 555 nm.

Fig. 2
Fig. 2

(left panel) (a) Scatter plots of acdom(410) as a function of(Kd(410) – Kw(410)) in black, (Kd(410) - Kw(410)) – ((Kd(670)-Kw(670)) in blue, and (Kd(410) - Kw(410)) - (Kd(670) - Kw(670)) - (Δp(410)-Δp(670)) in red, for the DS1 data set and a sun zenith angle at 30°. (c) as in (a) but where the 555 wavelength is used instead of 670. (right panels) scatter plot of the estimated values of acdom(410) calculated at each successive step describe in the left panels as a function of the true acdom(410) values. The solid line represents the 1:1 line. The statistical indicators are provided as indicated for a sun angle at 30°.

Fig. 3
Fig. 3

(left panel) Scatter plots of acdom(412) as a function of (a) (Kd(412) – Kw(412)), (c) (Kd(412) - Kw(412)) - (Kd(555) - Kw(555)) and (e) (Kd(412) - Kw(412)) - (Kd(555) - Kw(555)) - (Δp(412)-Δp(555)) for the DS2-D in situ data set (right panels) Scatter plot of the estimated values of acdom(412) calculated from the (b) first, (d) second, and (f) last step of the algorithm. The red lines in the left panels represent the fitted curves obtained from the DS1 data set, and the blue lines represent the best fits on the DS2-D data set.

Fig. 4
Fig. 4

Scatter plots of acdom(412) estimated at the (a) first, (b) second and (c) last step of the model, as a function of in situ measurements. The solid line represents the 1:1 line. The dashed lines represent the 1:2 and 2:1 lines.

Fig. 5
Fig. 5

Comparison of the modeled and the measured acdom(412) from the D2-V data set using (a) the present algorithm, (b) the Mannino et al. [4]’s algorithm, (c) the D’Sa et al. [17]’s algorithm, and (d) the Dong et al. [22]’s algorithm. For the two empirical algorithms [4,17], the black dots are for the original algorithm and the blue ones when their coefficients are adapted to the DS2-D data set used for the algorithm development.

Fig. 6
Fig. 6

As for Fig. 5 but using the NOMAD-Matchup data set. The parameters used in the empirical algorithms presented in panels b) and c) have been adapted to the present data set (see text).

Tables (3)

Tables Icon

Table 1 Mean, standard deviation, and range values of acdom(410), acdom(410)/atot(410), Kd(410), Kd(555), and Kd(670) for the four considered data set (DS1 is the synthetic data set, DS2-D and DS2-V only gather in situ data, DS3 is the match-up data set which is composed by in situ acdom(410) measurements and SeaWiFS retrieved Rrs parameters). N represents the number of data points. For in situ data (DS2-D and DS2-V) the blue wavelength is 412 nm.

Tables Icon

Table 2 Statistics computed on the D2-V data set using the algorithm defined in this study and those documented previously, values in brackets indicate the statistics computed from these models adjusted to our data set.

Tables Icon

Table 3 Statistics computed on the NOMAD Matchup (N = 109) data set using the algorithm defined in this study and those documented previously and adjusted to our development data set (see Fig. 6).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

K d (λ)= K w (λ)+ K dbio (λ)
K d (412)= K w (412)+f( a cdom (412))+ Δ p (412)
K d ( λ p )= K w ( λ p )+ Δ p ( λ p )
a cdom (410)=g[ ( K d (410) K w (410))( K d ( λ p ) K w ( λ p )) ( Δ p (410) Δ p ( λ p )) ]
RMSD= Σ i=1 N ( y i x i ) 2 N
MRAD= 1 N i=1 N | y i x i | x i 100
Bias= 1 N i=1 N y i x i x i 100
a cdom (410)= 10 [ 0.008Lo g 10 ( X ) 2 +1.017Lo g 10 ( X )+0.0416 ]
a cdom (412)= 10 [ 0.1548Lo g 10 ( X ) 2 +1.1939Lo g 10 ( X )+0.0689 ]
Δ p (412) Δ p (555)= 10 [ 0.009Lo g 10 ( Y ) 2 +1.147Lo g 10 ( Y )0.26 ]
( ( K d (412) K w (412))( K d (555) K w (555)) )= 10 [ A.Lo g 10 ( R rs (412) R rs (555) ) 3 +B.Lo g 10 ( R rs (412) R rs (555) ) 2 +C.Lo g 10 ( R rs (412) R rs (555) )+D ]

Metrics