Abstract

Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 μm. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz – 40 kHz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11(4), 287–300 (2001).
    [CrossRef]
  2. A. A. Tseng, “Recent developments in micromilling using focused ion beam technology,” J. Micromech. Microeng. 14(4), R15–R34 (2004).
    [CrossRef]
  3. C. Martelli, P. Olivero, J. Canning, N. Groothoff, S. Prawer, S. Huntington, and B. Gibson, “Micromachining long period gratings in optical fibres using focused ion beam,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2007), p. BTuC6.
  4. J.-L. Kou, S.-J. Qiu, F. Xu, Y.-Q. Lu, Y. Yuan, G. Zhao, “Miniaturized metal-dielectric-hybrid fiber tip grating for refractive index sensing,” IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011).
    [CrossRef]
  5. J. L. Kou, S. J. Qiu, F. Xu, Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011).
    [CrossRef] [PubMed]
  6. D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
    [CrossRef]
  7. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011).
    [CrossRef] [PubMed]
  8. F. Wang, W. Yuan, O. Hansen, O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
    [CrossRef] [PubMed]
  9. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
    [CrossRef] [PubMed]
  10. J. L. Kou, J. Feng, L. Ye, F. Xu, Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [CrossRef] [PubMed]
  11. W. Yuan, F. Wang, A. Savenko, D. H. Petersen, O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
    [CrossRef] [PubMed]
  12. S. Pevec, E. Cibula, B. Lenardic, D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
    [CrossRef]
  13. S. Pevec, D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011).
    [CrossRef] [PubMed]
  14. S. Pevec, D. Donlagic, “Miniature micro-wire based optical fiber-field access device,” Opt. Express 20(25), 27874–27887 (2012).
    [CrossRef] [PubMed]
  15. T. Wei, Y. Han, H.-L. Tsai, H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [CrossRef] [PubMed]
  16. L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, H.-L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors 11(1), 54–61 (2011).
    [CrossRef] [PubMed]
  17. L. Yuan, T. Wei, Q. Han, H. Wang, J. Huang, L. Jiang, H. Xiao, “Fiber inline Michelson interferometer fabricated by a femtosecond laser,” Opt. Lett. 37(21), 4489–4491 (2012).
    [CrossRef] [PubMed]
  18. J. Kalenik, R. Pająk, “A cantilever optical-fiber accelerometer,” Sens. Actuators A Phys. 68(1-3), 350–355 (1998).
    [CrossRef]

2012 (2)

2011 (8)

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, H.-L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors 11(1), 54–61 (2011).
[CrossRef] [PubMed]

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

S. Pevec, E. Cibula, B. Lenardic, D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

S. Pevec, D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011).
[CrossRef] [PubMed]

J.-L. Kou, S.-J. Qiu, F. Xu, Y.-Q. Lu, Y. Yuan, G. Zhao, “Miniaturized metal-dielectric-hybrid fiber tip grating for refractive index sensing,” IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011).
[CrossRef]

J. L. Kou, S. J. Qiu, F. Xu, Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011).
[CrossRef] [PubMed]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011).
[CrossRef] [PubMed]

F. Wang, W. Yuan, O. Hansen, O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[CrossRef] [PubMed]

2010 (2)

2008 (1)

2007 (1)

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

2004 (1)

A. A. Tseng, “Recent developments in micromilling using focused ion beam technology,” J. Micromech. Microeng. 14(4), R15–R34 (2004).
[CrossRef]

2001 (1)

S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11(4), 287–300 (2001).
[CrossRef]

1998 (1)

J. Kalenik, R. Pająk, “A cantilever optical-fiber accelerometer,” Sens. Actuators A Phys. 68(1-3), 350–355 (1998).
[CrossRef]

Bang, O.

F. Wang, W. Yuan, O. Hansen, O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[CrossRef] [PubMed]

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

Berenschot, J. W.

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Cibula, E.

S. Pevec, E. Cibula, B. Lenardic, D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

de Man, S.

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Deladi, S.

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Donlagic, D.

Elwenspoek, M. C.

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Feng, J.

Gadgil, V. J.

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Hakuta, K.

Han, Q.

Han, Y.

Hansen, O.

Heeck, K.

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Huang, J.

Iannuzzi, D.

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Jiang, L.

L. Yuan, T. Wei, Q. Han, H. Wang, J. Huang, L. Jiang, H. Xiao, “Fiber inline Michelson interferometer fabricated by a femtosecond laser,” Opt. Lett. 37(21), 4489–4491 (2012).
[CrossRef] [PubMed]

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, H.-L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors 11(1), 54–61 (2011).
[CrossRef] [PubMed]

Kalenik, J.

J. Kalenik, R. Pająk, “A cantilever optical-fiber accelerometer,” Sens. Actuators A Phys. 68(1-3), 350–355 (1998).
[CrossRef]

Kawai, Y.

Kou, J. L.

Kou, J.-L.

J.-L. Kou, S.-J. Qiu, F. Xu, Y.-Q. Lu, Y. Yuan, G. Zhao, “Miniaturized metal-dielectric-hybrid fiber tip grating for refractive index sensing,” IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011).
[CrossRef]

Le Kien, F.

Lenardic, B.

S. Pevec, E. Cibula, B. Lenardic, D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

Lu, Y.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, H.-L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors 11(1), 54–61 (2011).
[CrossRef] [PubMed]

Lu, Y. Q.

Lu, Y.-Q.

J.-L. Kou, S.-J. Qiu, F. Xu, Y.-Q. Lu, Y. Yuan, G. Zhao, “Miniaturized metal-dielectric-hybrid fiber tip grating for refractive index sensing,” IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011).
[CrossRef]

Miyazaki, H. T.

Nakajima, K.

Nayak, K. P.

Pajak, R.

J. Kalenik, R. Pająk, “A cantilever optical-fiber accelerometer,” Sens. Actuators A Phys. 68(1-3), 350–355 (1998).
[CrossRef]

Petersen, D. H.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

Pevec, S.

Puers, R.

S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11(4), 287–300 (2001).
[CrossRef]

Qiu, S. J.

Qiu, S.-J.

J.-L. Kou, S.-J. Qiu, F. Xu, Y.-Q. Lu, Y. Yuan, G. Zhao, “Miniaturized metal-dielectric-hybrid fiber tip grating for refractive index sensing,” IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011).
[CrossRef]

Rector, J. H.

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Reyntjens, S.

S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11(4), 287–300 (2001).
[CrossRef]

Sanders, R. G. P.

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Savenko, A.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

Schreuders, H.

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Slaman, M.

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Sugimoto, Y.

Tsai, H.-L.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, H.-L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors 11(1), 54–61 (2011).
[CrossRef] [PubMed]

T. Wei, Y. Han, H.-L. Tsai, H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

Tseng, A. A.

A. A. Tseng, “Recent developments in micromilling using focused ion beam technology,” J. Micromech. Microeng. 14(4), R15–R34 (2004).
[CrossRef]

Wang, F.

F. Wang, W. Yuan, O. Hansen, O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[CrossRef] [PubMed]

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

Wang, H.

Wang, Q. J.

Wang, S.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, H.-L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors 11(1), 54–61 (2011).
[CrossRef] [PubMed]

Wei, T.

Xiao, H.

Xu, F.

Ye, L.

Yuan, L.

Yuan, W.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

F. Wang, W. Yuan, O. Hansen, O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[CrossRef] [PubMed]

Yuan, Y.

J.-L. Kou, S.-J. Qiu, F. Xu, Y.-Q. Lu, Y. Yuan, G. Zhao, “Miniaturized metal-dielectric-hybrid fiber tip grating for refractive index sensing,” IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011).
[CrossRef]

Zhao, G.

J.-L. Kou, S.-J. Qiu, F. Xu, Y.-Q. Lu, Y. Yuan, G. Zhao, “Miniaturized metal-dielectric-hybrid fiber tip grating for refractive index sensing,” IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011).
[CrossRef]

Zhao, L.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, H.-L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors 11(1), 54–61 (2011).
[CrossRef] [PubMed]

IEEE Photon. J. (1)

S. Pevec, E. Cibula, B. Lenardic, D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J.-L. Kou, S.-J. Qiu, F. Xu, Y.-Q. Lu, Y. Yuan, G. Zhao, “Miniaturized metal-dielectric-hybrid fiber tip grating for refractive index sensing,” IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011).
[CrossRef]

J. Micromech. Microeng. (2)

S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11(4), 287–300 (2001).
[CrossRef]

A. A. Tseng, “Recent developments in micromilling using focused ion beam technology,” J. Micromech. Microeng. 14(4), R15–R34 (2004).
[CrossRef]

Meas. Sci. Technol. (1)

D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

J. Kalenik, R. Pająk, “A cantilever optical-fiber accelerometer,” Sens. Actuators A Phys. 68(1-3), 350–355 (1998).
[CrossRef]

Sensors (1)

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, H.-L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors 11(1), 54–61 (2011).
[CrossRef] [PubMed]

Other (1)

C. Martelli, P. Olivero, J. Canning, N. Groothoff, S. Prawer, S. Huntington, and B. Gibson, “Micromachining long period gratings in optical fibres using focused ion beam,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2007), p. BTuC6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Microwire fabrication process: (a) SMF-SFF fusion splicing; (b) cleaving to desired length; (c) SFF-cMMF fusion splicing; (d) cMMF cleaving (30-40 μm); (e) etching; (f) final structure; (g) SEM micrograph of etched microwire; (h) structure forming fiber cross-section.

Fig. 2
Fig. 2

Indented Fabry-Perot cavity SEM micrographs and related optical reflection spectrum (top); cantilever FP structure micrograph and related optical reflection spectrum (bottom).

Fig. 3
Fig. 3

Temperature response of both Fabry-Perot structures: indented FP cavity (full dots, blue line) and FP cantilever structure (hollow dots, red line).

Fig. 4
Fig. 4

Fabry-Perot cantilever structure: time responses (left) and related fast Fourier transforms (right) when an external frequency is applied.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L= λ 1 λ 2 2 n eff Δλ
f 1 = 3.52 2π l 2 EI ρA = 1.76a 2π l 2 E ρ

Metrics