Abstract

Several Applications for tunable laser diodes have strict constraints in terms of overall power consumption. Furthermore, the implementation in harsh environments with large temperature fluctuations is necessary. Due to the constraint in power consumption, the application of active cooling might not be an option. For this reason we investigate the temperature characteristics of an electrically pumped MEMS-VCSEL with wide continuous wavelength tuning. For the first time, a mode hop free single mode (side mode suppression ratio (SMSR) > 40dB) tuning range of 45nm at 70°C is demonstrated with a MEMS-VCSEL. An increase of the tuning range from 85nm at 20°C to 92nm at 40°C is measured and explained. In contrast to fixed wavelength VCSEL, the investigated device shows a negative temperature induced wavelength shift of −4.5nmK−1, which is caused by the MEMS-mirror. At 1560nm, the fibre-coupled optical output power is above 0.6mW over the entire temperature range between 20°C to 70°C and shows a maximum of > 3mW at 20°C.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quant. Electron. 6, 1201–1215 (2000).
    [CrossRef]
  2. T. Mizunami, S. Hirose, T. Yoshinaga, K. Yamamoto, “Power-stabilized tunable narrow-band source using a VCSEL and an EDFA for FBG sensor interrogation,” Meas. Sci. Technol. 24,094017 (2013).
    [CrossRef]
  3. G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54μm,” Appl. Phys. B 76, 603–608 (2003).
    [CrossRef]
  4. A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
    [CrossRef] [PubMed]
  5. O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert, “VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines,” Opt. Express 21, 19951–19965 (2013).
    [CrossRef] [PubMed]
  6. V. Jayaraman, G.D. Cole, M. Robertson, A. Uddin, A. Cable, “High-sweep-rate 1310nm MEMS-VCSEL with 150nm continuous tuning range,” Electron. Lett., 48, 867–869 (2012).
    [CrossRef]
  7. I. Grulkowski, J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. Fujimoto, A. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
    [CrossRef] [PubMed]
  8. A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, E. Kapon, “8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band,” Opt. Express 19, 16996–17001 (2011).
    [CrossRef] [PubMed]
  9. SFF committee, “Specification for SFP+,” SFF Specifications, SFF-8431 Rev 4.1 + Addendum (2013).
  10. F. Sugihwo, M.C. Larson, J.S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70,547 (1997).
    [CrossRef]
  11. P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, R.N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Tech. Lett. 10, 1679–1681 (1998).
    [CrossRef]
  12. T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
    [CrossRef]
  13. T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).
  14. M.C.Y. Huang, B.C. Kan, Z. Ye, A.P. Pisano, C.J. Chang-Hasnain, “Monolithic Integrated Piezoelectric MEMS-Tunable VCSEL,” IEEE J. Sel. Top. Quant. Electron. 13, 374–380 (2007).
    [CrossRef]
  15. H. Sano, A. Matsutani, F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th ECOC, P2.26, pp. 1–2 (2009).
  16. M. Huang, Y. Zhou, C. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express 15, 1222–1227 (2007).
    [CrossRef] [PubMed]
  17. Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
    [CrossRef]
  18. D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
    [CrossRef]
  19. B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012).
    [CrossRef]
  20. T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).
  21. S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009).
    [CrossRef]
  22. C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011).
    [CrossRef] [PubMed]
  23. M. Ortsiefer, R. Shau, G. Boehm, F. Koehler, M.-C. Amann, “Low-threshold index-guided 1.5μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76,21792181 (2000).
    [CrossRef]

2013 (5)

T. Mizunami, S. Hirose, T. Yoshinaga, K. Yamamoto, “Power-stabilized tunable narrow-band source using a VCSEL and an EDFA for FBG sensor interrogation,” Meas. Sci. Technol. 24,094017 (2013).
[CrossRef]

O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert, “VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines,” Opt. Express 21, 19951–19965 (2013).
[CrossRef] [PubMed]

I. Grulkowski, J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. Fujimoto, A. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
[CrossRef] [PubMed]

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

2012 (2)

B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012).
[CrossRef]

V. Jayaraman, G.D. Cole, M. Robertson, A. Uddin, A. Cable, “High-sweep-rate 1310nm MEMS-VCSEL with 150nm continuous tuning range,” Electron. Lett., 48, 867–869 (2012).
[CrossRef]

2011 (2)

2009 (1)

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009).
[CrossRef]

2008 (1)

2007 (2)

M.C.Y. Huang, B.C. Kan, Z. Ye, A.P. Pisano, C.J. Chang-Hasnain, “Monolithic Integrated Piezoelectric MEMS-Tunable VCSEL,” IEEE J. Sel. Top. Quant. Electron. 13, 374–380 (2007).
[CrossRef]

M. Huang, Y. Zhou, C. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express 15, 1222–1227 (2007).
[CrossRef] [PubMed]

2004 (1)

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
[CrossRef]

2003 (1)

G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54μm,” Appl. Phys. B 76, 603–608 (2003).
[CrossRef]

2000 (2)

K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quant. Electron. 6, 1201–1215 (2000).
[CrossRef]

M. Ortsiefer, R. Shau, G. Boehm, F. Koehler, M.-C. Amann, “Low-threshold index-guided 1.5μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76,21792181 (2000).
[CrossRef]

1998 (1)

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, R.N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Tech. Lett. 10, 1679–1681 (1998).
[CrossRef]

1997 (1)

F. Sugihwo, M.C. Larson, J.S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70,547 (1997).
[CrossRef]

Amann, M.

Amann, M.C.

G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54μm,” Appl. Phys. B 76, 603–608 (2003).
[CrossRef]

Amann, M.-C.

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011).
[CrossRef] [PubMed]

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009).
[CrossRef]

M. Ortsiefer, R. Shau, G. Boehm, F. Koehler, M.-C. Amann, “Low-threshold index-guided 1.5μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76,21792181 (2000).
[CrossRef]

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

Azimi, M.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, R.N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Tech. Lett. 10, 1679–1681 (1998).
[CrossRef]

Bengtsson, J.

B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012).
[CrossRef]

Boehm, G.

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011).
[CrossRef] [PubMed]

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009).
[CrossRef]

M. Ortsiefer, R. Shau, G. Boehm, F. Koehler, M.-C. Amann, “Low-threshold index-guided 1.5μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76,21792181 (2000).
[CrossRef]

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

Boucart, J.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
[CrossRef]

Cable, A.

Caliman, A.

Chang-Hasnain, C.

Chang-Hasnain, C.J.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

M.C.Y. Huang, B.C. Kan, Z. Ye, A.P. Pisano, C.J. Chang-Hasnain, “Monolithic Integrated Piezoelectric MEMS-Tunable VCSEL,” IEEE J. Sel. Top. Quant. Electron. 13, 374–380 (2007).
[CrossRef]

Chase, C.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

Chen, J.

Chih-Cheng, L.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, R.N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Tech. Lett. 10, 1679–1681 (1998).
[CrossRef]

Chitgarha, M.R.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

Cole, G.D.

V. Jayaraman, G.D. Cole, M. Robertson, A. Uddin, A. Cable, “High-sweep-rate 1310nm MEMS-VCSEL with 150nm continuous tuning range,” Electron. Lett., 48, 867–869 (2012).
[CrossRef]

Davani, H.

Debernardi, P.

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012).
[CrossRef]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011).
[CrossRef] [PubMed]

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

Ebert, V.

Fan, W.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
[CrossRef]

Fujimoto, J.

Fujimura, N.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).

Geiger, K.

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

Gierl, C.

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011).
[CrossRef] [PubMed]

Grasse, C.

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011).
[CrossRef] [PubMed]

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

Gruendl, T.

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011).
[CrossRef] [PubMed]

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

Grulkowski, I.

Gustavsson, J.S.

B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012).
[CrossRef]

Hager, T.

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

Haglund, A.

B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012).
[CrossRef]

Haglund, E.

B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012).
[CrossRef]

Hangauer, A.

Harris, J.S.

F. Sugihwo, M.C. Larson, J.S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70,547 (1997).
[CrossRef]

Hirata, T.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).

Hirose, S.

T. Mizunami, S. Hirose, T. Yoshinaga, K. Yamamoto, “Power-stabilized tunable narrow-band source using a VCSEL and an EDFA for FBG sensor interrogation,” Meas. Sci. Technol. 24,094017 (2013).
[CrossRef]

Huang, M.

Huang, M.C.Y.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

M.C.Y. Huang, B.C. Kan, Z. Ye, A.P. Pisano, C.J. Chang-Hasnain, “Monolithic Integrated Piezoelectric MEMS-Tunable VCSEL,” IEEE J. Sel. Top. Quant. Electron. 13, 374–380 (2007).
[CrossRef]

Iakovlev, V.

Iga, K.

K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quant. Electron. 6, 1201–1215 (2000).
[CrossRef]

Jatta, S.

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011).
[CrossRef] [PubMed]

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009).
[CrossRef]

Jayaraman, V.

Jiang, J.

Kagexama, T.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
[CrossRef]

Kaiser, S.

Kan, B.C.

M.C.Y. Huang, B.C. Kan, Z. Ye, A.P. Pisano, C.J. Chang-Hasnain, “Monolithic Integrated Piezoelectric MEMS-Tunable VCSEL,” IEEE J. Sel. Top. Quant. Electron. 13, 374–380 (2007).
[CrossRef]

Kanbara, N.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).

Kapon, E.

Khaleghi, S.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

Klein, A.

Kner, P.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
[CrossRef]

Koegel, B.

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009).
[CrossRef]

Koehler, F.

M. Ortsiefer, R. Shau, G. Boehm, F. Koehler, M.-C. Amann, “Low-threshold index-guided 1.5μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76,21792181 (2000).
[CrossRef]

Kogel, B.

B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012).
[CrossRef]

Koyama, F.

H. Sano, A. Matsutani, F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th ECOC, P2.26, pp. 1–2 (2009).

Kueppers, F.

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011).
[CrossRef] [PubMed]

Lackner, M.

G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54μm,” Appl. Phys. B 76, 603–608 (2003).
[CrossRef]

Larson, M.C.

F. Sugihwo, M.C. Larson, J.S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70,547 (1997).
[CrossRef]

Larsson, A.

B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012).
[CrossRef]

Liu, J.

Matsutani, A.

H. Sano, A. Matsutani, F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th ECOC, P2.26, pp. 1–2 (2009).

Maute, M.

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009).
[CrossRef]

Meffert, C.

Meissner, P.

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011).
[CrossRef] [PubMed]

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009).
[CrossRef]

Mereuta, A.

Meyer, R.

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

Mizunami, T.

T. Mizunami, S. Hirose, T. Yoshinaga, K. Yamamoto, “Power-stabilized tunable narrow-band source using a VCSEL and an EDFA for FBG sensor interrogation,” Meas. Sci. Technol. 24,094017 (2013).
[CrossRef]

Nabiev, R.F.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
[CrossRef]

Nagel, R.D.

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

Nishiyama, N.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).

Noda, R.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).

Ooyama, M.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).

Ortsiefer, M.

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54μm,” Appl. Phys. B 76, 603–608 (2003).
[CrossRef]

M. Ortsiefer, R. Shau, G. Boehm, F. Koehler, M.-C. Amann, “Low-threshold index-guided 1.5μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76,21792181 (2000).
[CrossRef]

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

Pathak, R.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
[CrossRef]

Peidong, W.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, R.N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Tech. Lett. 10, 1679–1681 (1998).
[CrossRef]

Pisano, A.P.

M.C.Y. Huang, B.C. Kan, Z. Ye, A.P. Pisano, C.J. Chang-Hasnain, “Monolithic Integrated Piezoelectric MEMS-Tunable VCSEL,” IEEE J. Sel. Top. Quant. Electron. 13, 374–380 (2007).
[CrossRef]

Potsaid, B.

Rao, Y.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

Riemenschneider, F.

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009).
[CrossRef]

Robertson, M.

V. Jayaraman, G.D. Cole, M. Robertson, A. Uddin, A. Cable, “High-sweep-rate 1310nm MEMS-VCSEL with 150nm continuous tuning range,” Electron. Lett., 48, 867–869 (2012).
[CrossRef]

Rosskopf, J.

G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54μm,” Appl. Phys. B 76, 603–608 (2003).
[CrossRef]

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

Sacks, R.N.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, R.N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Tech. Lett. 10, 1679–1681 (1998).
[CrossRef]

Saito, H.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).

Sano, H.

H. Sano, A. Matsutani, F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th ECOC, P2.26, pp. 1–2 (2009).

Schulz, C.

Shau, R.

G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54μm,” Appl. Phys. B 76, 603–608 (2003).
[CrossRef]

M. Ortsiefer, R. Shau, G. Boehm, F. Koehler, M.-C. Amann, “Low-threshold index-guided 1.5μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76,21792181 (2000).
[CrossRef]

Sirbu, A.

Strzoda, R.

Sugihwo, F.

F. Sugihwo, M.C. Larson, J.S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70,547 (1997).
[CrossRef]

Sun, D.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
[CrossRef]

Suruceanu, G.

Tayebati, P.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, R.N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Tech. Lett. 10, 1679–1681 (1998).
[CrossRef]

Tezuka, S.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).

Totschnig, G.

G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54μm,” Appl. Phys. B 76, 603–608 (2003).
[CrossRef]

Uddin, A.

V. Jayaraman, G.D. Cole, M. Robertson, A. Uddin, A. Cable, “High-sweep-rate 1310nm MEMS-VCSEL with 150nm continuous tuning range,” Electron. Lett., 48, 867–869 (2012).
[CrossRef]

Vakshoori, D.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, R.N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Tech. Lett. 10, 1679–1681 (1998).
[CrossRef]

Wagner, S.

Watanabe, T.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).

Westbergh, P.

B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012).
[CrossRef]

Willner, A.E.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

Winter, F.

G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54μm,” Appl. Phys. B 76, 603–608 (2003).
[CrossRef]

Witzel, O.

Worland, D.D.P.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

Yamamoto, K.

T. Mizunami, S. Hirose, T. Yoshinaga, K. Yamamoto, “Power-stabilized tunable narrow-band source using a VCSEL and an EDFA for FBG sensor interrogation,” Meas. Sci. Technol. 24,094017 (2013).
[CrossRef]

Yang, W.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

Yano, T.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).

Ye, Z.

M.C.Y. Huang, B.C. Kan, Z. Ye, A.P. Pisano, C.J. Chang-Hasnain, “Monolithic Integrated Piezoelectric MEMS-Tunable VCSEL,” IEEE J. Sel. Top. Quant. Electron. 13, 374–380 (2007).
[CrossRef]

Yoshinaga, T.

T. Mizunami, S. Hirose, T. Yoshinaga, K. Yamamoto, “Power-stabilized tunable narrow-band source using a VCSEL and an EDFA for FBG sensor interrogation,” Meas. Sci. Technol. 24,094017 (2013).
[CrossRef]

Yuen, W.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
[CrossRef]

Zhang, D.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
[CrossRef]

Zhou, Y.

Ziyadi, M.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

Zogal, K.

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011).
[CrossRef] [PubMed]

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009).
[CrossRef]

Appl. Phys. B (1)

G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54μm,” Appl. Phys. B 76, 603–608 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

F. Sugihwo, M.C. Larson, J.S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70,547 (1997).
[CrossRef]

M. Ortsiefer, R. Shau, G. Boehm, F. Koehler, M.-C. Amann, “Low-threshold index-guided 1.5μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76,21792181 (2000).
[CrossRef]

Electron. Lett., (1)

V. Jayaraman, G.D. Cole, M. Robertson, A. Uddin, A. Cable, “High-sweep-rate 1310nm MEMS-VCSEL with 150nm continuous tuning range,” Electron. Lett., 48, 867–869 (2012).
[CrossRef]

IEEE J. Quant. Electron., (1)

B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron. (3)

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013).
[CrossRef]

K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quant. Electron. 6, 1201–1215 (2000).
[CrossRef]

M.C.Y. Huang, B.C. Kan, Z. Ye, A.P. Pisano, C.J. Chang-Hasnain, “Monolithic Integrated Piezoelectric MEMS-Tunable VCSEL,” IEEE J. Sel. Top. Quant. Electron. 13, 374–380 (2007).
[CrossRef]

IEEE Photon. Tech. Lett. (3)

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, R.N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Tech. Lett. 10, 1679–1681 (1998).
[CrossRef]

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004).
[CrossRef]

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

T. Mizunami, S. Hirose, T. Yoshinaga, K. Yamamoto, “Power-stabilized tunable narrow-band source using a VCSEL and an EDFA for FBG sensor interrogation,” Meas. Sci. Technol. 24,094017 (2013).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Semicond. Sci. Technol. (1)

T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013).
[CrossRef]

Other (4)

T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).

H. Sano, A. Matsutani, F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th ECOC, P2.26, pp. 1–2 (2009).

SFF committee, “Specification for SFP+,” SFF Specifications, SFF-8431 Rev 4.1 + Addendum (2013).

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1:
Fig. 1:

Schematic cross section of the MEMS-VCSEL, which consists of a movable MEMS-DBR and an InP-based long-wavelength half-VCSEL.

Fig. 2:
Fig. 2:

Microscopic view on top of a fully processed wafer of MEMS-VCSEL. A single MEMS-VCSEL is electro-optically connected for the device characterization.

Fig. 3:
Fig. 3:

Envelopes showing the tuning range for different device temperatures. The VCSEL current is set constant to 30mA. An exemplary emission spectrum (at 20°C) of the MEMS-VCSEL emitting at λq = 1565nm (and its adjacent higher order longitudinal mode λq+1 = 1480nm) is shown as well.

Fig. 4:
Fig. 4:

Minimum λmin, maximum λmax and center wavelength λc of the tuning range over temperature (a). Tuning ranges Δλ over temperature (b).

Fig. 5:
Fig. 5:

Peak wavelength λ18 over device temperature (a). Schematic for change in the resonator geometry with increasing temperature (b). The air gap shrinks with an increasing temperature.

Fig. 6:
Fig. 6:

Output power over VCSEL current at different wafer temperatures (a) and maximum output power over temperature (b). All measurements are taken at a constant wavelength of 1560nm.

Fig. 7:
Fig. 7:

Output power over wavelength at different wafer temperatures and VCSEL currents.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

FSR = λ q λ q + 1 λ c 2 2 L opt ,
L opt ( λ q ) = q λ q 2 .
Δ λ q = 2 q Δ L opt ,

Metrics