Abstract

We propose and experimentally demonstrate a new scheme to reduce the energy consumption of optical network units (ONUs) in orthogonal frequency division multiplexing passive optical networks (OFDM PONs) by using time-domain interleaved OFDM (TI-OFDM) technique. In a conventional OFDM PON, each ONU has to process the complete downstream broadcast OFDM signal with a high sampling rate and a large FFT size to retrieve its required data, even if it employs a portion of OFDM subcarriers. However, in our scheme, the ONU only needs to sample and process one data group from the downlink TI-OFDM signal, effectively reducing the sampling rate and the FFT size of the ONU. Thus, the energy efficiency of ONUs in OFDM PONs can be greatly improved. A proof-of-concept experiment is conducted to verify the feasibility of the proposed scheme. Compared to the conventional OFDM PON, our proposal can save 17.1% and 26.7% energy consumption of ONUs by halving and quartering the sampling rate and the FFT size of ONUs with the use of the TI-OFDM technology.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [CrossRef]
  2. D. Qian, N. Cvijetic, J. Hu, T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
    [CrossRef]
  3. E. Wong, “Next-generation broadband access networks and technologies,” J. Lightwave Technol. 30(4), 597–608 (2012).
    [CrossRef]
  4. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express 18(3), 2137–2143 (2010).
    [CrossRef] [PubMed]
  5. D. Qian, N. Cvijetic, J. Hu, T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
    [CrossRef]
  6. M.-F. Huang, J. Yu, D. Qian, N. Cvijetic, and G.-K. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Proc. OFC 2009, San Diego, California, America, paper OMV5.
    [CrossRef]
  7. B. Skubic, E. Betou, T. Ayhan, S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag. 50(1), 122–127 (2012).
    [CrossRef]
  8. H. Kimura, H. Nakamura, S. Kimura, N. Yoshimoto, “Numerical analysis of dynamic SNR management by controlling DSP calculation precision for energy-efficient OFDM-PON,” IEEE Photon. Technol. Lett. 24(23), 2132–2135 (2012).
    [CrossRef]
  9. J. Zhang, J. Hu, D. Qian, T. Wang, “Energy efficient OFDM transceiver design based on traffic tracking and adaptive bandwidth adjustment,” Opt. Express 19(26), B983–B988 (2011).
    [CrossRef] [PubMed]
  10. X. Hu, L. Zhang, P. Cao, K. Wang, Y. Su, “Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal,” Opt. Express 20(7), 8071–8077 (2012).
    [CrossRef] [PubMed]
  11. X. Hu, P. Cao, Z. Zhuang, L. Zhang, Q. Yang, Y. Su, “Energy-efficient optical line terminal for WDM-OFDM-PON based on two-dimensional subcarrier and layer allocation,” Opt. Express 20(23), 25284–25291 (2012).
    [CrossRef] [PubMed]
  12. K. Kanonakis and I. Tomkos, “Energy-efficient OFDMA-PON exploiting modular OLT/ONU digital signal processing,” in Proc. OFC2013, Anaheim, California, America, paper OTh3A.4.
    [CrossRef]
  13. C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express 20(26), B7–B14 (2012).
    [CrossRef] [PubMed]
  14. C. Van Praet, G. Torfs, Z. Li, X. Yin, D. Suvakovic, H. Chow, X. Qiu, P. Vetter, “10 Gbit/s bit interleaving CDR for low-power PON,” Electron. Lett. 48(21), 1361–1363 (2012).
    [CrossRef]
  15. B. Schmidt, A. Lowery, J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol. 26(1), 196–203 (2008).
    [CrossRef]
  16. B. Schmidt, A. Lowery, and J. Armstrong, “Experimental demonstrations of 20 Gbit/s direct-detection optical OFDM and 12 Gbit/s with a colorless transmitter,” in Proc. OFC2007, Anaheim, California, America, paper PDP18.
  17. B. Sedighi, K. Lee, R. Tucker, H. Chow, and P. Vetter, “Energy efficiency in future 40-Gb/s fiber access networks,” in Proc. OFC2012, Los Angeles, America, paper JTh2A.
    [CrossRef]
  18. Sandvine, “Global Internet Phenomena Spotlight – North America, Fixed Access, Spring 2011” (Sandvine, 2011). http://www.sandvine.com/news/global_broadband_trends.asp .

2012 (8)

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
[CrossRef]

E. Wong, “Next-generation broadband access networks and technologies,” J. Lightwave Technol. 30(4), 597–608 (2012).
[CrossRef]

X. Hu, L. Zhang, P. Cao, K. Wang, Y. Su, “Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal,” Opt. Express 20(7), 8071–8077 (2012).
[CrossRef] [PubMed]

X. Hu, P. Cao, Z. Zhuang, L. Zhang, Q. Yang, Y. Su, “Energy-efficient optical line terminal for WDM-OFDM-PON based on two-dimensional subcarrier and layer allocation,” Opt. Express 20(23), 25284–25291 (2012).
[CrossRef] [PubMed]

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express 20(26), B7–B14 (2012).
[CrossRef] [PubMed]

C. Van Praet, G. Torfs, Z. Li, X. Yin, D. Suvakovic, H. Chow, X. Qiu, P. Vetter, “10 Gbit/s bit interleaving CDR for low-power PON,” Electron. Lett. 48(21), 1361–1363 (2012).
[CrossRef]

B. Skubic, E. Betou, T. Ayhan, S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag. 50(1), 122–127 (2012).
[CrossRef]

H. Kimura, H. Nakamura, S. Kimura, N. Yoshimoto, “Numerical analysis of dynamic SNR management by controlling DSP calculation precision for energy-efficient OFDM-PON,” IEEE Photon. Technol. Lett. 24(23), 2132–2135 (2012).
[CrossRef]

2011 (1)

2010 (2)

2009 (1)

D. Qian, N. Cvijetic, J. Hu, T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

2008 (1)

Anthapadmanabhan, N. P.

Armstrong, J.

Ayhan, T.

B. Skubic, E. Betou, T. Ayhan, S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag. 50(1), 122–127 (2012).
[CrossRef]

Betou, E.

B. Skubic, E. Betou, T. Ayhan, S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag. 50(1), 122–127 (2012).
[CrossRef]

Boislaigue, R.

Cao, P.

Chow, H.

Cvijetic, N.

Dahlfort, S.

B. Skubic, E. Betou, T. Ayhan, S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag. 50(1), 122–127 (2012).
[CrossRef]

Dupas, A.

Farah, R.

Galaro, J.

Hu, J.

Hu, X.

Kimura, H.

H. Kimura, H. Nakamura, S. Kimura, N. Yoshimoto, “Numerical analysis of dynamic SNR management by controlling DSP calculation precision for energy-efficient OFDM-PON,” IEEE Photon. Technol. Lett. 24(23), 2132–2135 (2012).
[CrossRef]

Kimura, S.

H. Kimura, H. Nakamura, S. Kimura, N. Yoshimoto, “Numerical analysis of dynamic SNR management by controlling DSP calculation precision for energy-efficient OFDM-PON,” IEEE Photon. Technol. Lett. 24(23), 2132–2135 (2012).
[CrossRef]

Lau, M. F.

Li, Z.

C. Van Praet, G. Torfs, Z. Li, X. Yin, D. Suvakovic, H. Chow, X. Qiu, P. Vetter, “10 Gbit/s bit interleaving CDR for low-power PON,” Electron. Lett. 48(21), 1361–1363 (2012).
[CrossRef]

Liu, B.

Lowery, A.

Nakamura, H.

H. Kimura, H. Nakamura, S. Kimura, N. Yoshimoto, “Numerical analysis of dynamic SNR management by controlling DSP calculation precision for energy-efficient OFDM-PON,” IEEE Photon. Technol. Lett. 24(23), 2132–2135 (2012).
[CrossRef]

Qian, D.

Qiu, X.

C. Van Praet, G. Torfs, Z. Li, X. Yin, D. Suvakovic, H. Chow, X. Qiu, P. Vetter, “10 Gbit/s bit interleaving CDR for low-power PON,” Electron. Lett. 48(21), 1361–1363 (2012).
[CrossRef]

Qua, G.

Schmidt, B.

Skubic, B.

B. Skubic, E. Betou, T. Ayhan, S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag. 50(1), 122–127 (2012).
[CrossRef]

Su, Y.

Suvakovic, D.

Torfs, G.

Van Praet, C.

Van Veen, D.

Vetter, P.

Wang, K.

Wang, T.

Wong, E.

Xin, X.

Yang, Q.

Yin, X.

Yoshimoto, N.

H. Kimura, H. Nakamura, S. Kimura, N. Yoshimoto, “Numerical analysis of dynamic SNR management by controlling DSP calculation precision for energy-efficient OFDM-PON,” IEEE Photon. Technol. Lett. 24(23), 2132–2135 (2012).
[CrossRef]

Yu, C.

Yu, J.

Zhang, J.

Zhang, L.

Zhang, Q.

Zhuang, Z.

Electron. Lett. (1)

C. Van Praet, G. Torfs, Z. Li, X. Yin, D. Suvakovic, H. Chow, X. Qiu, P. Vetter, “10 Gbit/s bit interleaving CDR for low-power PON,” Electron. Lett. 48(21), 1361–1363 (2012).
[CrossRef]

IEEE Commun. Mag. (1)

B. Skubic, E. Betou, T. Ayhan, S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag. 50(1), 122–127 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Kimura, H. Nakamura, S. Kimura, N. Yoshimoto, “Numerical analysis of dynamic SNR management by controlling DSP calculation precision for energy-efficient OFDM-PON,” IEEE Photon. Technol. Lett. 24(23), 2132–2135 (2012).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (5)

Other (5)

K. Kanonakis and I. Tomkos, “Energy-efficient OFDMA-PON exploiting modular OLT/ONU digital signal processing,” in Proc. OFC2013, Anaheim, California, America, paper OTh3A.4.
[CrossRef]

M.-F. Huang, J. Yu, D. Qian, N. Cvijetic, and G.-K. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Proc. OFC 2009, San Diego, California, America, paper OMV5.
[CrossRef]

B. Schmidt, A. Lowery, and J. Armstrong, “Experimental demonstrations of 20 Gbit/s direct-detection optical OFDM and 12 Gbit/s with a colorless transmitter,” in Proc. OFC2007, Anaheim, California, America, paper PDP18.

B. Sedighi, K. Lee, R. Tucker, H. Chow, and P. Vetter, “Energy efficiency in future 40-Gb/s fiber access networks,” in Proc. OFC2012, Los Angeles, America, paper JTh2A.
[CrossRef]

Sandvine, “Global Internet Phenomena Spotlight – North America, Fixed Access, Spring 2011” (Sandvine, 2011). http://www.sandvine.com/news/global_broadband_trends.asp .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic principle of time-domain interleaved OFDM (TI-OFDM) technique.

Fig. 2
Fig. 2

Schematic diagram of the proposed energy-efficient ONUs in the OFDM PON by using the TI-OFDM technique.

Fig. 3
Fig. 3

Experimental setup for energy-efficient ONUs in OFDM PON by using the proposed TI-OFDM technique.

Fig. 4
Fig. 4

BER curves of data after (a) back-to-back transmission and (b) 25-km SSMF transmission in the conventional OFDM PON and the proposed energy-efficient OFDM PON with the TI-OFDM technique, respectively.

Fig. 5
Fig. 5

(a) Calculated mathematical expectations of the power consumptions of ONUs with the variation of the offered load in the conventional OFDM PON and the proposed TI-OFDM PON1,2; (b) Offered load over the course of an average day in North America [18]; (c) Power consumption of ONUs in the energy-efficient and conventional OFDM PONs versus time in an average day.

Metrics