Abstract

A compact Fourier-transform imaging spectropolarimeter covering a 450-1000 nm spectral range is presented. The sensor, which is based on two birefringent retarders and a Wollaston interferometer, offers significant advantages over previous implementations. Specifically, with no internal moving parts, electrically controllable or micro polarization components, the full wavelength-dependent state of polarization, spectral and spatial information of a scene can be acquired simultaneously. Outdoor measurements of several cars and plants demonstrate the sensor’s potential for color measurement, target identification, and agriculture monitoring applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
    [CrossRef] [PubMed]
  2. N. J. Pust, J. A. Shaw, “Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments,” Opt. Express 20(14), 15559–15568 (2012).
    [CrossRef] [PubMed]
  3. T. G. Moran, J. M. Davila, “Three-Dimensional Polarimetric Imaging of Coronal Mass Ejections,” Science 305(5680), 66–70 (2004).
    [CrossRef] [PubMed]
  4. J. S. Tyo, D. L. Goldstein, D. B. Chenault, J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  5. X. Meng, J. Li, T. Xu, D. Liu, R. Zhu, “High throughput full Stokes Fourier transform imaging spectropolarimetry,” Opt. Express 21(26), 32071–32085 (2013).
    [CrossRef] [PubMed]
  6. T. Mu, C. Zhang, C. Jia, W. Ren, “Static hyperspectral imaging polarimeter for full linear Stokes parameters,” Opt. Express 20(16), 18194–18201 (2012).
    [CrossRef] [PubMed]
  7. M. H. Smith, J. B. Woodruff, J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999).
    [CrossRef]
  8. A. Bénière, M. Alouini, F. Goudail, D. Dolfi, “Design and experimental validation of a snapshot polarization contrast imager,” Appl. Opt. 48(30), 5764–5773 (2009).
    [CrossRef] [PubMed]
  9. M. W. Kudenov, M. E. L. Jungwirth, E. L. Dereniak, G. R. Gerhart, “White light Sagnac interferometer for snapshot linear polarimetric imaging,” Opt. Express 17(25), 22520–22534 (2009).
    [CrossRef] [PubMed]
  10. K. Oka, T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24(21), 1475–1477 (1999).
    [CrossRef] [PubMed]
  11. D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng. 41(5), 1048–1054 (2002).
    [CrossRef]
  12. S. H. Jones, F. J. Iannarilli, P. L. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express 12(26), 6559–6573 (2004).
    [CrossRef] [PubMed]
  13. K. Oka, T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11(13), 1510–1519 (2003).
    [CrossRef] [PubMed]
  14. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express 15(20), 12792–12805 (2007).
    [CrossRef] [PubMed]
  15. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. 50(8), 1170–1185 (2011).
    [CrossRef] [PubMed]
  16. J. Li, J. Zhu, H. Wu, “Compact static Fourier transform imaging spectropolarimeter based on channeled polarimetry,” Opt. Lett. 35(22), 3784–3786 (2010).
    [CrossRef] [PubMed]

2013 (1)

2012 (2)

2011 (1)

2010 (1)

2009 (2)

2007 (1)

2006 (1)

2004 (2)

2003 (1)

2002 (1)

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng. 41(5), 1048–1054 (2002).
[CrossRef]

1999 (3)

K. Oka, T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24(21), 1475–1477 (1999).
[CrossRef] [PubMed]

M. H. Smith, J. B. Woodruff, J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999).
[CrossRef]

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Alouini, M.

Bénière, A.

Bouma, G. J.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Chenault, D. B.

Craven-Jones, J.

Davila, J. M.

T. G. Moran, J. M. Davila, “Three-Dimensional Polarimetric Imaging of Coronal Mass Ejections,” Science 305(5680), 66–70 (2004).
[CrossRef] [PubMed]

Dereniak, E. L.

Descour, M.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng. 41(5), 1048–1054 (2002).
[CrossRef]

Dolfi, D.

Garcia, J.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng. 41(5), 1048–1054 (2002).
[CrossRef]

Gerhart, G. R.

Goldstein, D. L.

Goudail, F.

Groner, W.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Hagen, N. A.

Hamilton, T.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng. 41(5), 1048–1054 (2002).
[CrossRef]

Harris, A. G.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Howe, J. D.

M. H. Smith, J. B. Woodruff, J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999).
[CrossRef]

Iannarilli, F. J.

Ince, C.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Jia, C.

Jones, S. H.

Jungwirth, M. E. L.

Kaneko, T.

Kato, T.

Kebabian, P. L.

Kudenov, M. W.

Li, J.

Liu, D.

Locke, A.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng. 41(5), 1048–1054 (2002).
[CrossRef]

McMillan, R. W.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng. 41(5), 1048–1054 (2002).
[CrossRef]

Meng, X.

Messmer, K.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Moran, T. G.

T. G. Moran, J. M. Davila, “Three-Dimensional Polarimetric Imaging of Coronal Mass Ejections,” Science 305(5680), 66–70 (2004).
[CrossRef] [PubMed]

Mu, T.

Nadeau, R. G.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Oka, K.

Pust, N. J.

Ren, W.

Sabatke, D.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng. 41(5), 1048–1054 (2002).
[CrossRef]

Shaw, J. A.

Smith, M. H.

M. H. Smith, J. B. Woodruff, J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999).
[CrossRef]

Stapelbroek, M. G.

Tyo, J. S.

Winkelman, J. W.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Woodruff, J. B.

M. H. Smith, J. B. Woodruff, J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999).
[CrossRef]

Wu, H.

Xu, T.

Zhang, C.

Zhu, J.

Zhu, R.

Appl. Opt. (3)

Nat. Med. (1)

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Opt. Eng. (1)

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng. 41(5), 1048–1054 (2002).
[CrossRef]

Opt. Express (7)

Opt. Lett. (2)

Proc. SPIE (1)

M. H. Smith, J. B. Woodruff, J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999).
[CrossRef]

Science (1)

T. G. Moran, J. M. Davila, “Three-Dimensional Polarimetric Imaging of Coronal Mass Ejections,” Science 305(5680), 66–70 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic setup of the FTISP system.

Fig. 2
Fig. 2

Photograph of the FTISP mounted on a tripod.

Fig. 3
Fig. 3

Experiment setup for laboratory testing of the FTISP.

Fig. 4
Fig. 4

(a) Spectrum from the FTISP system (blue line) and StellarNet spectrometer (black line). (b) Normalized Stokes parameters. Solid and dashed curves show the experimental and theoretical values, respectively.

Fig. 5
Fig. 5

(a) 2D S0 spatial images from the 3D datacubes at various wavelengths. (b) RGB composite image that was generated using the FTISP system’s spectral data.

Fig. 6
Fig. 6

(a) 2D DOP spatial images from the 3D datacubes at various wavelengths. (b) DOP, band integrated data.

Fig. 7
Fig. 7

(a) RGB composite image that was generated using the FTISP system’s spectral data (Artificial flower is indicated by red circle). (b) Spectra for artificial and natural leaves.

Fig. 8
Fig. 8

(a) DOP, band integrated data. (b) S0 image at 753.6 nm wavelength.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S i (σ)=[ S 0 (σ) S 1 (σ) S 2 (σ) S 3 (σ) ]=[ I 0 (σ)+ I 90 (σ) I 0 (σ) I 90 (σ) I +45 (σ) I 45 (σ) I R (σ) I L (σ) ],
I(z)= σ 2 σ 1 I(z,σ)dσ = σ 2 σ 1 M s S i (σ)dσ ,
M s = M A M W M P M R 2 M R 1 ,
I(z)= σ 2 σ 1 1+cos( ϕ z (σ)) 4 { S 0 (σ)+ 1 2 S 2 (σ)[exp(i ϕ 2 (σ))+exp(i ϕ 2 (σ))] + 1 4 [ S 13 (σ)exp(i( ϕ 1 (σ) ϕ 2 (σ))) + S 13 * (σ)exp(i( ϕ 1 (σ) ϕ 2 (σ)))] 1 4 [ S 13 (σ)exp(i( ϕ 1 (σ)+ ϕ 2 (σ))) + S 13 * (σ)exp(i( ϕ 1 (σ)+ ϕ 2 (σ)))] }dσ ,
ϕ z (σ)=2πΔzσ,
ϕ 1 (σ)=2πB(σ) d 1 σ,
ϕ 2 (σ)=2πB(σ) d 2 σ.
I(z)= 1 4 C 0 (z)+ 1 8 C 2 (z L 2 )+ 1 8 C 2 * (z L 2 ) + 1 16 C 1 (z( L 1 L 2 ))+ 1 16 C 1 * (z( L 1 L 2 )). 1 16 C 3 (z( L 1 + L 2 )) 1 16 C 3 * (z( L 1 + L 2 )
F 1 ( C 0 )= 1 4 S 0 (σ),
F 1 ( C 1 )= 1 16 ( S 1 (σ)j S 3 (σ))exp(j( ϕ 2 (σ) ϕ 1 (σ))),
F 1 ( C 2 )= 1 8 S 2 (σ)exp(j ϕ 2 (σ)).
DOP ( σ ) = S 1 ( σ ) 2 + S 2 ( σ ) 2 + S 3 ( σ ) 2 S 0 ( σ ) .

Metrics