Abstract

Spark discharge has been proved to be an effective way to enhance the LIBS signal while moderate cylindrical confinement is able to increase the signal repeatability with limited signal enhancement effects. In the present work, these two methods were combined together not only to improve the pulse-to-pulse signal repeatability but also to simultaneously and significantly enhance the signal as well as SNR. Plasma images showed that the confinement stabilized the morphology of the plasma, especially for the discharge assisted process, which explained the improvement of the signal repeatability.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
    [CrossRef]
  2. L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
    [CrossRef] [PubMed]
  3. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
    [CrossRef] [PubMed]
  4. M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
    [CrossRef] [PubMed]
  5. W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
    [CrossRef] [PubMed]
  6. L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
    [CrossRef]
  7. W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
    [CrossRef] [PubMed]
  8. O. A. Nassef, H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1564–1572 (2005).
    [CrossRef]
  9. Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).
  10. R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc. 58(3), 531–542 (2003).
    [CrossRef]
  11. A. M. Popov, F. Colao, R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
    [CrossRef]
  12. A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
    [CrossRef]
  13. P. Yeates, E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
    [CrossRef]
  14. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
    [CrossRef] [PubMed]
  15. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
    [CrossRef] [PubMed]
  16. Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
    [CrossRef]
  17. Z. Hou, Z. Wang, J. Liu, W. Ni, Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
    [CrossRef] [PubMed]
  18. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
    [CrossRef]
  19. L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
    [CrossRef]
  20. Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
    [CrossRef]
  21. H. R. Griem, ed., Plasma Spectroscopy (McGraw-Hill, 1964).
  22. C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
    [CrossRef]

2013

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Z. Hou, Z. Wang, J. Liu, W. Ni, Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

2012

2011

2010

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

P. Yeates, E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[CrossRef]

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
[CrossRef] [PubMed]

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

2009

A. M. Popov, F. Colao, R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

2008

C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

2007

2006

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

2005

2003

R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc. 58(3), 531–542 (2003).
[CrossRef]

Aguilera, J. A.

C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

Allen, S. D.

Aragón, C.

C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

Babushok, V. I.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Baudelet, M.

Cai, Z. X.

Chen, Q. L.

Colao, F.

A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

Corsi, M.

Cristoforetti, G.

Dagdigian, P. J.

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Ding, H.-B.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Dottery, E. L.

Elsayed-Ali, H. E.

O. A. Nassef, H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1564–1572 (2005).
[CrossRef]

Fang, X.

Fantoni, R.

A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

Gorbatenko, A. A.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

Gottfried, J. L.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Guo, L. B.

He, X. N.

Hedwig, R.

R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc. 58(3), 531–542 (2003).
[CrossRef]

Hidalgo, M.

Hou, Z.

Z. Hou, Z. Wang, J. Liu, W. Ni, Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Hou, Z.-Y.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Hu, W.

Iriarte, D.

Jiang, D.

Kennedy, E. T.

P. Yeates, E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[CrossRef]

Kexue, L. I.

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

Killinger, D. K.

Labutin, T. A.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

Legnaioli, S.

Li, C. M.

Li, K.

Li, K. X.

Li, L.

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Li, X.

Li, Z.

Z. Hou, Z. Wang, J. Liu, W. Ni, Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Liu, J.

Liu, W.

Long, J. M.

Lu, J.-D.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Lu, Y. F.

Lui, S.-

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

Lui, S. L.

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Munson, C. A.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Nassef, O. A.

O. A. Nassef, H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1564–1572 (2005).
[CrossRef]

Ni, W.

Z. Hou, Z. Wang, J. Liu, W. Ni, Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Palanco, S.

Palleschi, V.

Park, J. B.

Popov, A. M.

A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

A. M. Popov, F. Colao, R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

Qian, H.

Qian, H. G.

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

Richardson, M.

Salvetti, A.

Shao, J.

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[CrossRef] [PubMed]

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

Shen, Q. M.

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

Sigman, M.

Stefano, C.

Tognoni, E.

Wang, Z.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

Z. Hou, Z. Wang, J. Liu, W. Ni, Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Waterbury, R. D.

Weidman, M.

Wu, T.

Xie, P.

Yeates, P.

P. Yeates, E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[CrossRef]

Yuan, T.

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Yuan, T.-B.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Zeng, X. Y.

Zeng, X.-Y.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Zhang, B. Y.

Zhou, W.

Zhou, W. D.

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

Zhou, W.-D.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Zhou, Y. S.

Zorov, N. B.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

Appl. Spectrosc.

Frontiers Phys.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

J. Anal. At. Spectrom.

A. M. Popov, F. Colao, R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

J. Appl. Phys.

P. Yeates, E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[CrossRef]

Opt. Express

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

Z. Hou, Z. Wang, J. Liu, W. Ni, Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
[CrossRef] [PubMed]

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
[CrossRef] [PubMed]

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Spectrochim. Acta, B At. Spectrosc.

O. A. Nassef, H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1564–1572 (2005).
[CrossRef]

R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc. 58(3), 531–542 (2003).
[CrossRef]

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

Other

H. R. Griem, ed., Plasma Spectroscopy (McGraw-Hill, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup (not to scale).

Fig. 2
Fig. 2

Plasma temperature and electron density under different laser energy.

Fig. 3
Fig. 3

Plasma images of different configurations, a: conventional LIBS, b: cavity, c: discharge, d: cavity and discharge. Laser energy = 65mJ, delay time = 1μs, gate width = 1ms.

Fig. 4
Fig. 4

RSD (%) of plasma morphology for different configurations. Average value of RSD for all pixels are 20.8% (a), 7.8% (b), 30.3% (c), 12.6% (d). Laser energy = 65mJ, delay time = 1μs, gate width = 1ms.

Fig. 5
Fig. 5

Intensity and SNR of C(I) 193.09nm under different laser energy.

Fig. 6
Fig. 6

RSD of C(I) 193.09nm under different laser energy.

Metrics