Abstract

Spark discharge has been proved to be an effective way to enhance the LIBS signal while moderate cylindrical confinement is able to increase the signal repeatability with limited signal enhancement effects. In the present work, these two methods were combined together not only to improve the pulse-to-pulse signal repeatability but also to simultaneously and significantly enhance the signal as well as SNR. Plasma images showed that the confinement stabilized the morphology of the plasma, especially for the discharge assisted process, which explained the improvement of the signal repeatability.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
    [CrossRef]
  2. L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
    [CrossRef] [PubMed]
  3. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
    [CrossRef] [PubMed]
  4. M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
    [CrossRef] [PubMed]
  5. W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
    [CrossRef] [PubMed]
  6. L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
    [CrossRef]
  7. W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
    [CrossRef] [PubMed]
  8. O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1564–1572 (2005).
    [CrossRef]
  9. Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).
  10. R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc. 58(3), 531–542 (2003).
    [CrossRef]
  11. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
    [CrossRef]
  12. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
    [CrossRef]
  13. P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
    [CrossRef]
  14. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
    [CrossRef] [PubMed]
  15. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
    [CrossRef] [PubMed]
  16. Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
    [CrossRef]
  17. Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
    [CrossRef] [PubMed]
  18. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
    [CrossRef]
  19. L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
    [CrossRef]
  20. Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
    [CrossRef]
  21. H. R. Griem, ed., Plasma Spectroscopy (McGraw-Hill, 1964).
  22. C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
    [CrossRef]

2013 (3)

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

2012 (2)

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

2011 (3)

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[CrossRef] [PubMed]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

2010 (6)

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[CrossRef]

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
[CrossRef] [PubMed]

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

2009 (1)

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

2008 (1)

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

2007 (1)

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
[CrossRef] [PubMed]

2006 (1)

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

2005 (2)

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[CrossRef] [PubMed]

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1564–1572 (2005).
[CrossRef]

2003 (1)

R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc. 58(3), 531–542 (2003).
[CrossRef]

Aguilera, J. A.

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

Allen, S. D.

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
[CrossRef] [PubMed]

Aragón, C.

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

Babushok, V. I.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Baudelet, M.

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
[CrossRef] [PubMed]

Cai, Z. X.

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Chen, Q. L.

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

Corsi, M.

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[CrossRef] [PubMed]

Cristoforetti, G.

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[CrossRef] [PubMed]

Dagdigian, P. J.

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
[CrossRef] [PubMed]

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Ding, H.-B.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Dottery, E. L.

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
[CrossRef] [PubMed]

Elsayed-Ali, H. E.

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1564–1572 (2005).
[CrossRef]

Fang, X.

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[CrossRef] [PubMed]

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

Gorbatenko, A. A.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

Gottfried, J. L.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Guo, L. B.

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

He, X. N.

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Hedwig, R.

R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc. 58(3), 531–542 (2003).
[CrossRef]

Hidalgo, M.

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[CrossRef] [PubMed]

Hou, Z.

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Hou, Z.-Y.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Hu, W.

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Iriarte, D.

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[CrossRef] [PubMed]

Jiang, D.

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

Kennedy, E. T.

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[CrossRef]

Kexue, L. I.

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

Killinger, D. K.

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
[CrossRef] [PubMed]

Labutin, T. A.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

Legnaioli, S.

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[CrossRef] [PubMed]

Li, C. M.

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Li, K.

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[CrossRef] [PubMed]

Li, K. X.

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

Li, L.

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Li, X.

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[CrossRef] [PubMed]

Li, Z.

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Liu, J.

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

Liu, W.

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[CrossRef] [PubMed]

Long, J. M.

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

Lu, J.-D.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Lu, Y. F.

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Lui, S.-

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

Lui, S. L.

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Munson, C. A.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Nassef, O. A.

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1564–1572 (2005).
[CrossRef]

Ni, W.

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Palanco, S.

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
[CrossRef] [PubMed]

Palleschi, V.

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[CrossRef] [PubMed]

Park, J. B.

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

Qian, H.

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[CrossRef] [PubMed]

Qian, H. G.

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

Richardson, M.

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
[CrossRef] [PubMed]

Salvetti, A.

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[CrossRef] [PubMed]

Shao, J.

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[CrossRef] [PubMed]

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

Shen, Q. M.

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

Sigman, M.

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
[CrossRef] [PubMed]

Stefano, C.

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
[CrossRef] [PubMed]

Tognoni, E.

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[CrossRef] [PubMed]

Wang, Z.

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Waterbury, R. D.

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
[CrossRef] [PubMed]

Weidman, M.

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
[CrossRef] [PubMed]

Wu, T.

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

Xie, P.

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[CrossRef] [PubMed]

Yeates, P.

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[CrossRef]

Yuan, T.

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Yuan, T.-B.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Zeng, X. Y.

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Zeng, X.-Y.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Zhang, B. Y.

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Zhou, W.

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[CrossRef] [PubMed]

Zhou, W. D.

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

Zhou, W.-D.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

Zhou, Y. S.

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Zorov, N. B.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

Appl. Spectrosc. (1)

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[CrossRef] [PubMed]

Frontiers Phys. (1)

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).

J. Anal. At. Spectrom. (4)

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011).
[CrossRef]

Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, and W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013).
[CrossRef]

J. Appl. Phys. (1)

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[CrossRef]

Opt. Express (7)

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[CrossRef]

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[CrossRef] [PubMed]

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[CrossRef] [PubMed]

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007).
[CrossRef] [PubMed]

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010).
[CrossRef] [PubMed]

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[CrossRef] [PubMed]

Spectrochim. Acta, B At. Spectrosc. (6)

O. A. Nassef and H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1564–1572 (2005).
[CrossRef]

R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc. 58(3), 531–542 (2003).
[CrossRef]

L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010).
[CrossRef]

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010).
[CrossRef]

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008).
[CrossRef]

Other (1)

H. R. Griem, ed., Plasma Spectroscopy (McGraw-Hill, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup (not to scale).

Fig. 2
Fig. 2

Plasma temperature and electron density under different laser energy.

Fig. 3
Fig. 3

Plasma images of different configurations, a: conventional LIBS, b: cavity, c: discharge, d: cavity and discharge. Laser energy = 65mJ, delay time = 1μs, gate width = 1ms.

Fig. 4
Fig. 4

RSD (%) of plasma morphology for different configurations. Average value of RSD for all pixels are 20.8% (a), 7.8% (b), 30.3% (c), 12.6% (d). Laser energy = 65mJ, delay time = 1μs, gate width = 1ms.

Fig. 5
Fig. 5

Intensity and SNR of C(I) 193.09nm under different laser energy.

Fig. 6
Fig. 6

RSD of C(I) 193.09nm under different laser energy.

Metrics