Abstract

We report on the continuous wave and passively Q-switched lasers in Nd:YAG ridge waveguides fabricated by a combination of swift Kr ion irradiation and femtosecond laser ablation. Owing to the deep penetration length (~50 μm) of 670 MeV Kr8+ ions into the crystal, ridge waveguides with large-area cross section, supporting nearly symmetric guiding modes, were produced. Continuous wave lasers with maximum 182 mW output power at ~1064 nm have been realized at 808-nm optical pump. Using graphene as a saturable absorber, passively Q-switched waveguide laser operations were achieved. The pulsed laser produces 90 ns pulses, with a ~4.2 MHz repetition rate, 19% slope efficiency and 110 mW average output power, corresponding to single-pulse energy of 26.5 nJ.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. N. Billeh, M. Liu, T. Buma, “Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source,” Opt. Express 18(18), 18519–18524 (2010).
    [CrossRef] [PubMed]
  2. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
    [CrossRef] [PubMed]
  3. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer-Verlag, 2012).
  4. J. Liu, J. Dai, S. L. Chin, X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
    [CrossRef]
  5. W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W. C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett. 9(1), 54–58 (2012).
    [CrossRef]
  6. V. K. Singh, A. K. Rai, “Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review,” Lasers Med. Sci. 26(5), 673–687 (2011).
    [CrossRef] [PubMed]
  7. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, R. Moncorgé, “Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27(22), 1980–1982 (2002).
    [CrossRef] [PubMed]
  8. J. H. Lin, K. H. Lin, H. H. Hsu, W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
    [CrossRef]
  9. S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
    [CrossRef]
  10. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [CrossRef] [PubMed]
  11. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35(21), 3709–3711 (2010).
    [CrossRef] [PubMed]
  12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [CrossRef] [PubMed]
  13. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [CrossRef]
  14. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene Photonics and Optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [CrossRef]
  15. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
    [CrossRef]
  16. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
    [CrossRef]
  17. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
    [CrossRef] [PubMed]
  18. Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
    [CrossRef]
  19. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [CrossRef]
  20. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [CrossRef]
  21. J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
    [CrossRef] [PubMed]
  22. D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
    [CrossRef] [PubMed]
  23. R. Salas-Montiel, L. Bastard, G. Grosa, J.-E. Broquin, “Hybrid Neodymium-doped passively Q-switched waveguide laser,” Mater. Sci. Eng. B 149(2), 181–184 (2008).
    [CrossRef]
  24. M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
    [CrossRef]
  25. Y. Tan, Q. Luan, F. Liu, F. Chen, J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
    [CrossRef] [PubMed]
  26. Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
    [CrossRef] [PubMed]
  27. I. Chartier, B. Ferrand, D. Pelenc, S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, “Growth and low-threshold laser oscillation of an epitaxially grown Nd:YAG waveguide,” Opt. Lett. 17(11), 810–812 (1992).
    [CrossRef] [PubMed]
  28. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. 6(5), 622–640 (2012).
    [CrossRef]
  29. D. Jauqe, F. Chen, Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
    [CrossRef]
  30. F. Chen, Y. Tan, D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34(1), 28–30 (2009).
    [CrossRef] [PubMed]
  31. F. Chen, J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [CrossRef]
  32. G. Lifante, Integrated Photonics: Fundamentals (John Wiley and Sons Ltd, 2003).
  33. Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, S. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
    [CrossRef] [PubMed]
  34. Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, S. Zhou, “Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals,” Opt. Mater. Express 2(5), 657–662 (2012).
    [CrossRef]
  35. J. R. Vázquez de Aldana, C. Méndez, L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14(3), 1329–1338 (2006).
    [CrossRef] [PubMed]
  36. A. Zoubir, L. Sha, K. Richardson, M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).
  37. J. F. Ziegler, computer code, SRIM, http://www.srim.org .
  38. J. Siebenmorgen, T. Calmano, K. Petermann, G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [CrossRef] [PubMed]
  39. D. Yevick, W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992).
    [CrossRef] [PubMed]
  40. G. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
    [CrossRef]
  41. N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
    [CrossRef]
  42. R. Degl’Innocenti, S. Reidt, A. Guarino, D. Rezzonico, G. Poberaj, P. Günter, “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100, 113121 (2006).
  43. H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses,” Opt. Lett. 32(11), 1536–1538 (2007).
    [CrossRef] [PubMed]

2014 (2)

F. Chen, J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[CrossRef]

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[CrossRef] [PubMed]

2013 (3)

2012 (6)

2011 (2)

V. K. Singh, A. K. Rai, “Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review,” Lasers Med. Sci. 26(5), 673–687 (2011).
[CrossRef] [PubMed]

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[CrossRef]

2010 (7)

Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[CrossRef]

J. Liu, J. Dai, S. L. Chin, X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene Photonics and Optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

Y. N. Billeh, M. Liu, T. Buma, “Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source,” Opt. Express 18(18), 18519–18524 (2010).
[CrossRef] [PubMed]

Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35(21), 3709–3711 (2010).
[CrossRef] [PubMed]

2009 (4)

F. Chen, Y. Tan, D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34(1), 28–30 (2009).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

2008 (4)

J. H. Lin, K. H. Lin, H. H. Hsu, W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[CrossRef]

R. Salas-Montiel, L. Bastard, G. Grosa, J.-E. Broquin, “Hybrid Neodymium-doped passively Q-switched waveguide laser,” Mater. Sci. Eng. B 149(2), 181–184 (2008).
[CrossRef]

D. Jauqe, F. Chen, Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

G. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

2007 (4)

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses,” Opt. Lett. 32(11), 1536–1538 (2007).
[CrossRef] [PubMed]

2006 (2)

J. R. Vázquez de Aldana, C. Méndez, L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14(3), 1329–1338 (2006).
[CrossRef] [PubMed]

R. Degl’Innocenti, S. Reidt, A. Guarino, D. Rezzonico, G. Poberaj, P. Günter, “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100, 113121 (2006).

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

2003 (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

A. Zoubir, L. Sha, K. Richardson, M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

2002 (1)

1992 (2)

Akhmadaliev, S.

Akhmadaliev, Sh.

Aravazhi, S.

Bae, M. K.

Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[CrossRef]

Bao, Q. L.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Bardyszewski, W.

Bastard, L.

R. Salas-Montiel, L. Bastard, G. Grosa, J.-E. Broquin, “Hybrid Neodymium-doped passively Q-switched waveguide laser,” Mater. Sci. Eng. B 149(2), 181–184 (2008).
[CrossRef]

Bauer, D.

Benayas, A.

G. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Billeh, Y. N.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene Photonics and Optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Borca, C. N.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

Broquin, J.-E.

R. Salas-Montiel, L. Bastard, G. Grosa, J.-E. Broquin, “Hybrid Neodymium-doped passively Q-switched waveguide laser,” Mater. Sci. Eng. B 149(2), 181–184 (2008).
[CrossRef]

Bukin, V. V.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Buma, T.

Cai, Z.

Calmano, T.

Cantelar, E.

G. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Cao, W. J.

W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W. C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett. 9(1), 54–58 (2012).
[CrossRef]

Chardon, A. M.

Chartier, I.

Chen, F.

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[CrossRef] [PubMed]

F. Chen, J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[CrossRef]

Y. Tan, Q. Luan, F. Liu, F. Chen, J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
[CrossRef] [PubMed]

Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, S. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[CrossRef] [PubMed]

Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, S. Zhou, “Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals,” Opt. Mater. Express 2(5), 657–662 (2012).
[CrossRef]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. 6(5), 622–640 (2012).
[CrossRef]

F. Chen, Y. Tan, D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34(1), 28–30 (2009).
[CrossRef] [PubMed]

D. Jauqe, F. Chen, Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

Cheng, Y.

Chernov, A. I.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Chin, S. L.

J. Liu, J. Dai, S. L. Chin, X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[CrossRef]

Choi, S. Y.

Clarkson, W. A.

Dai, J.

J. Liu, J. Dai, S. L. Chin, X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[CrossRef]

Dascalu, T.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[CrossRef]

Degl’Innocenti, R.

R. Degl’Innocenti, S. Reidt, A. Guarino, D. Rezzonico, G. Poberaj, P. Günter, “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100, 113121 (2006).

Dekorsy, T.

Dong, N.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Ferrand, B.

Ferrari, A.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[CrossRef]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene Photonics and Optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Field, S. J.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Fuerbach, A.

Gardillou, F.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

Garnov, S. V.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Girard, S.

Griebner, U.

J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[CrossRef] [PubMed]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[CrossRef]

Grosa, G.

R. Salas-Montiel, L. Bastard, G. Grosa, J.-E. Broquin, “Hybrid Neodymium-doped passively Q-switched waveguide laser,” Mater. Sci. Eng. B 149(2), 181–184 (2008).
[CrossRef]

Gross, S.

Guarino, A.

R. Degl’Innocenti, S. Reidt, A. Guarino, D. Rezzonico, G. Poberaj, P. Günter, “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100, 113121 (2006).

Günter, P.

R. Degl’Innocenti, S. Reidt, A. Guarino, D. Rezzonico, G. Poberaj, P. Günter, “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100, 113121 (2006).

Han, W. S.

Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[CrossRef]

Hanna, D. C.

Hasan, T.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene Photonics and Optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

He, F.

Heidepriem, H. E.

Hsieh, W. F.

J. H. Lin, K. H. Lin, H. H. Hsu, W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[CrossRef]

Hsu, H. H.

J. H. Lin, K. H. Lin, H. H. Hsu, W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[CrossRef]

Huang, G.

Huber, G.

Jang, S. Y.

Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[CrossRef]

Jaque, D.

F. Chen, Y. Tan, D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34(1), 28–30 (2009).
[CrossRef] [PubMed]

G. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Jauqe, D.

D. Jauqe, F. Chen, Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

Jia, Y.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Jipa, F.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[CrossRef]

Kelleher, E.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[CrossRef]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

Killi, A.

Kim, J. W.

Kutovoi, S. A.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Lancaster, D. G.

Large, A. C.

Laroche, M.

Lin, J. H.

J. H. Lin, K. H. Lin, H. H. Hsu, W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[CrossRef]

Lin, K. H.

J. H. Lin, K. H. Lin, H. H. Hsu, W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[CrossRef]

Liu, F.

Liu, J.

J. Liu, J. Dai, S. L. Chin, X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[CrossRef]

Liu, M.

Lobach, A. S.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Loh, K. P.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Luan, Q.

Luo, A. P.

W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W. C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett. 9(1), 54–58 (2012).
[CrossRef]

Luo, Z.

Luo, Z. C.

W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W. C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett. 9(1), 54–58 (2012).
[CrossRef]

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

Méndez, C.

Midorikawa, K.

Moncorgé, R.

Monro, T. M.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Nicolosi, V.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[CrossRef]

Nilsson, J.

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Obraztsov, P. A.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Pavel, N.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[CrossRef]

Pbraztsova, E. D.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Pelenc, D.

Petermann, K.

Petrov, V.

J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[CrossRef] [PubMed]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

Poberaj, G.

R. Degl’Innocenti, S. Reidt, A. Guarino, D. Rezzonico, G. Poberaj, P. Günter, “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100, 113121 (2006).

Pollnau, M.

J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[CrossRef] [PubMed]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

Popa, D.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[CrossRef]

Rai, A. K.

V. K. Singh, A. K. Rai, “Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review,” Lasers Med. Sci. 26(5), 673–687 (2011).
[CrossRef] [PubMed]

Reidt, S.

R. Degl’Innocenti, S. Reidt, A. Guarino, D. Rezzonico, G. Poberaj, P. Günter, “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100, 113121 (2006).

Rezzonico, D.

R. Degl’Innocenti, S. Reidt, A. Guarino, D. Rezzonico, G. Poberaj, P. Günter, “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100, 113121 (2006).

Richardson, K.

A. Zoubir, L. Sha, K. Richardson, M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Richardson, M.

A. Zoubir, L. Sha, K. Richardson, M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Rivier, S.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

Ródenas, A.

G. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Romanyuk, Y. E.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

Roso, L.

G. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

J. R. Vázquez de Aldana, C. Méndez, L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14(3), 1329–1338 (2006).
[CrossRef] [PubMed]

Rotermund, F.

Salamu, G.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[CrossRef]

Salas-Montiel, R.

R. Salas-Montiel, L. Bastard, G. Grosa, J.-E. Broquin, “Hybrid Neodymium-doped passively Q-switched waveguide laser,” Mater. Sci. Eng. B 149(2), 181–184 (2008).
[CrossRef]

Sha, L.

A. Zoubir, L. Sha, K. Richardson, M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Shcherbakov, I. A.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Shepherd, D. P.

Siebenmorgen, J.

Singh, V. K.

V. K. Singh, A. K. Rai, “Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review,” Lasers Med. Sci. 26(5), 673–687 (2011).
[CrossRef] [PubMed]

Sirotkin, A. A.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Solokhin, S. A.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Song, Y. W.

Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[CrossRef]

Sugioka, K.

Sun, H.

Sun, S.

Sun, Z.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene Photonics and Optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Sutter, D. H.

Tan, Y.

Tang, D. Y.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

Torchia, G.

G. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Torrisi, F.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[CrossRef]

Travers, J.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[CrossRef]

Tropper, A. C.

Vázquez de Aldana, J. R.

Voicu, F.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[CrossRef]

Wang, F.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[CrossRef]

Wang, H. Y.

W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W. C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett. 9(1), 54–58 (2012).
[CrossRef]

Wang, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Weng, J.

Withford, M. J.

Xu, H.

Xu, W. C.

W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W. C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett. 9(1), 54–58 (2012).
[CrossRef]

Xu, Z.

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Ye, C.

Yeom, D. I.

Yevick, D.

Zagumennyi, Y. D.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Zamfirescu, M.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[CrossRef]

Zavartsev, Y. D.

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Zawischa, I.

Zhang, H.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Zhang, X. C.

J. Liu, J. Dai, S. L. Chin, X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[CrossRef]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Zhao, L. M.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

Zhou, M.

Zhou, S.

Zhou, Z.

Zoubir, A.

A. Zoubir, L. Sha, K. Richardson, M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[CrossRef]

D. Jauqe, F. Chen, Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

G. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

A. Zoubir, L. Sha, K. Richardson, M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

IEEE J. Sel. Top. Quantum Electron. (2)

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

J. Appl. Phys. (1)

R. Degl’Innocenti, S. Reidt, A. Guarino, D. Rezzonico, G. Poberaj, P. Günter, “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100, 113121 (2006).

Laser Photon. Rev. (1)

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. 6(5), 622–640 (2012).
[CrossRef]

Laser Photonics Rev. (1)

F. Chen, J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[CrossRef]

Laser Phys. Lett. (4)

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[CrossRef]

W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W. C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett. 9(1), 54–58 (2012).
[CrossRef]

J. H. Lin, K. H. Lin, H. H. Hsu, W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008).
[CrossRef]

S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007).
[CrossRef]

Lasers Med. Sci. (1)

V. K. Singh, A. K. Rai, “Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review,” Lasers Med. Sci. 26(5), 673–687 (2011).
[CrossRef] [PubMed]

Mater. Sci. Eng. B (1)

R. Salas-Montiel, L. Bastard, G. Grosa, J.-E. Broquin, “Hybrid Neodymium-doped passively Q-switched waveguide laser,” Mater. Sci. Eng. B 149(2), 181–184 (2008).
[CrossRef]

Nano Res. (1)

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[CrossRef]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene Photonics and Optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

J. Liu, J. Dai, S. L. Chin, X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010).
[CrossRef]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

Opt. Express (9)

J. R. Vázquez de Aldana, C. Méndez, L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14(3), 1329–1338 (2006).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

J. Siebenmorgen, T. Calmano, K. Petermann, G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

Y. N. Billeh, M. Liu, T. Buma, “Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source,” Opt. Express 18(18), 18519–18524 (2010).
[CrossRef] [PubMed]

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[CrossRef] [PubMed]

D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
[CrossRef] [PubMed]

Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, S. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[CrossRef] [PubMed]

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
[CrossRef] [PubMed]

Y. Tan, Q. Luan, F. Liu, F. Chen, J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
[CrossRef] [PubMed]

Opt. Lett. (7)

J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[CrossRef] [PubMed]

Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35(21), 3709–3711 (2010).
[CrossRef] [PubMed]

H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses,” Opt. Lett. 32(11), 1536–1538 (2007).
[CrossRef] [PubMed]

F. Chen, Y. Tan, D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34(1), 28–30 (2009).
[CrossRef] [PubMed]

D. Yevick, W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992).
[CrossRef] [PubMed]

I. Chartier, B. Ferrand, D. Pelenc, S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, “Growth and low-threshold laser oscillation of an epitaxially grown Nd:YAG waveguide,” Opt. Lett. 17(11), 810–812 (1992).
[CrossRef] [PubMed]

M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, R. Moncorgé, “Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27(22), 1980–1982 (2002).
[CrossRef] [PubMed]

Opt. Mater. Express (1)

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[CrossRef]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Other (3)

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer-Verlag, 2012).

G. Lifante, Integrated Photonics: Fundamentals (John Wiley and Sons Ltd, 2003).

J. F. Ziegler, computer code, SRIM, http://www.srim.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic plot of the experimental setup for the CW and pulse laser oscillation in the Nd:YAG ridge waveguide. The inset picture is the microphotograph of the cross section of the waveguide sample: the ridge waveguide is located in the dashed square region.

Fig. 2
Fig. 2

(a) The electronic stopping power (blue line), nuclear stopping power (green line) curves as well as the refractive index profile (red line) of the 670 MeV Kr irradiated Nd:YAG planar waveguide as a function of the depth from the sample surface. The obtained (b) experimental and (c) simulated near-field intensity distributions of planar waveguide at 1064 nm.

Fig. 3
Fig. 3

Laser emission spectra from the Nd:YAG ridge waveguide in CW and graphene-SA Q-switched regimes. The inset shows the pulse train of the Q-switched waveguide laser.

Fig. 4
Fig. 4

(a) Repetition rate of the Q-switched waveguide laser and (b) output waveguide laser powers as a function of the launched pump in CW and Q-switched pulsed regimes. The inset depicts the laser modal profile at lasing wavelength of ~1064 nm.

Fig. 5
Fig. 5

Q-switched pulse duration and single-pulse energy as a function of launched pump power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δn= sin 2 Θ m 2n
ΔR 3.52 T R τ p

Metrics