Abstract

We demonstrate far-field super-resolution coherent anti-Stokes Raman scattering (CARS) microscopy by exciting the sample with photonic nanojets. The sub-diffraction photonic nanojets were formed on the surface of the sample by microspheres illuminated by laser beams, and images were acquired by a standard laser-scanning CARS microscope. When the laser beams were focused on the microspheres, the photonic nanojets determined the excitation volume instead of the diffraction-limited laser foci, leading to super-resolution. We imaged the sub-diffraction features of a Blu-ray disc using glass spheres with a refractive index of 1.46 and diameters in the 1-6 µm range. The microspheres provided a lateral magnification factor up to 5.0X and a lateral resolution of at least 200 nm at 796 nm laser wavelength, allowing us to resolve the features on the disc which were invisible under normal CARS imaging. The magnification factor depended on both the microsphere size and the focal plane position of the incident beams. To explain the magnification factor we performed theoretical simulations which showed excellent agreement with experimental results. This super-resolution technique could be very useful for the vibrational imaging of nano-scale objects on films and surfaces.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  2. A. Volkmer, J.-X. Cheng, X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
    [CrossRef]
  3. H. Wang, Y. Fu, P. Zickmund, R. Shi, J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
    [CrossRef] [PubMed]
  4. P. K. Upputuri, J. Lin, L. Gong, X.-Y. Liu, H. Wang, Z. Huang, “Circularly polarized coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(8), 1262–1264 (2013).
    [CrossRef] [PubMed]
  5. Y. Fu, T. B. Huff, H.-W. Wang, H. Wang, J.-X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16(24), 19396–19409 (2008).
    [CrossRef] [PubMed]
  6. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
    [CrossRef] [PubMed]
  7. J. Lin, K. Z. J. Er, W. Zheng, Z. Huang, “Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging,” Appl. Phys. Lett. 103(8), 083705 (2013).
    [CrossRef]
  8. J.-X. Cheng, A. Volkmer, X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
    [CrossRef]
  9. W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17(25), 22632–22638 (2009).
    [CrossRef] [PubMed]
  10. A. Nikolaenko, V. V. Krishnamachari, E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 013823 (2009).
    [CrossRef] [PubMed]
  11. K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
    [CrossRef] [PubMed]
  12. I. Toytman, D. Simanovskii, D. Palanker, “On illumination schemes for wide-field CARS microscopy,” Opt. Express 17(9), 7339–7347 (2009).
    [CrossRef] [PubMed]
  13. R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, R. J. Saykally, “Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B 106(34), 8489–8492 (2002).
    [CrossRef]
  14. K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43(5), 656–661 (2012).
    [CrossRef]
  15. A. Gasecka, A. Daradich, H. Dehez, M. Piché, D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38(21), 4510–4513 (2013).
    [CrossRef] [PubMed]
  16. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [CrossRef] [PubMed]
  17. X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
    [CrossRef]
  18. A. Darafsheh, G. F. Walsh, L. Dal Negro, V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
    [CrossRef]
  19. S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
    [CrossRef]
  20. Z. Chen, A. Taflove, V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [CrossRef] [PubMed]
  21. X. Huang, X. N. He, W. Xiong, Y. Gao, L. J. Jiang, L. Liu, Y. S. Zhou, L. Jiang, J. F. Silvain, Y. F. Lu, “Contrast enhancement using silica microspheres in coherent anti-Stokes Raman spectroscopic imaging,” Opt. Express 22(3), 2889–2896 (2014).
    [CrossRef] [PubMed]
  22. X. Li, Z. Chen, A. Taflove, V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [CrossRef] [PubMed]
  23. Y. Wu, F. Huang, D. Gu, F. Gan, “Organic materials for recordable blue laser optical storage,” Proc. SPIE 5966, 59661E (2005).
    [CrossRef]
  24. H. Kubo, “Optical disc and optical recording method,” E. P. Patent 1860656 A1 (2007).
  25. S. K. Lin, I. C. Lin, D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
    [CrossRef] [PubMed]
  26. G. Socrates, Infrared and Raman Characteristic Group Frequencies (John Wiley, 2001).
  27. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
    [CrossRef] [PubMed]

2014

2013

P. K. Upputuri, J. Lin, L. Gong, X.-Y. Liu, H. Wang, Z. Huang, “Circularly polarized coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(8), 1262–1264 (2013).
[CrossRef] [PubMed]

J. Lin, K. Z. J. Er, W. Zheng, Z. Huang, “Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging,” Appl. Phys. Lett. 103(8), 083705 (2013).
[CrossRef]

A. Gasecka, A. Daradich, H. Dehez, M. Piché, D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38(21), 4510–4513 (2013).
[CrossRef] [PubMed]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[CrossRef]

2012

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43(5), 656–661 (2012).
[CrossRef]

A. Darafsheh, G. F. Walsh, L. Dal Negro, V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[CrossRef]

2011

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[CrossRef]

2010

2009

2008

2006

2005

X. Li, Z. Chen, A. Taflove, V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[CrossRef] [PubMed]

Y. Wu, F. Huang, D. Gu, F. Gan, “Organic materials for recordable blue laser optical storage,” Proc. SPIE 5966, 59661E (2005).
[CrossRef]

H. Wang, Y. Fu, P. Zickmund, R. Shi, J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

2004

Z. Chen, A. Taflove, V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[CrossRef] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

J.-X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

2002

J.-X. Cheng, A. Volkmer, X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
[CrossRef]

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, R. J. Saykally, “Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B 106(34), 8489–8492 (2002).
[CrossRef]

2001

A. Volkmer, J.-X. Cheng, X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

Astratov, V. N.

A. Darafsheh, G. F. Walsh, L. Dal Negro, V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[CrossRef]

Backman, V.

Beeker, W. P.

Ben-Aryeh, Y.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[CrossRef]

Boller, K.-J.

Bonod, N.

Catalan, F. C.

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43(5), 656–661 (2012).
[CrossRef]

Chen, Z.

Cheng, J.-X.

Y. Fu, T. B. Huff, H.-W. Wang, H. Wang, J.-X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16(24), 19396–19409 (2008).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

J.-X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

J.-X. Cheng, A. Volkmer, X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
[CrossRef]

A. Volkmer, J.-X. Cheng, X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

Cleff, C.

Côté, D.

Dal Negro, L.

A. Darafsheh, G. F. Walsh, L. Dal Negro, V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[CrossRef]

Daradich, A.

Darafsheh, A.

A. Darafsheh, G. F. Walsh, L. Dal Negro, V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[CrossRef]

Dehez, H.

Devilez, A.

Er, K. Z. J.

J. Lin, K. Z. J. Er, W. Zheng, Z. Huang, “Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging,” Appl. Phys. Lett. 103(8), 083705 (2013).
[CrossRef]

Fallnich, C.

Fu, Y.

Y. Fu, T. B. Huff, H.-W. Wang, H. Wang, J.-X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16(24), 19396–19409 (2008).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

Furusawa, K.

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43(5), 656–661 (2012).
[CrossRef]

Gan, F.

Y. Wu, F. Huang, D. Gu, F. Gan, “Organic materials for recordable blue laser optical storage,” Proc. SPIE 5966, 59661E (2005).
[CrossRef]

Gao, Y.

Gasecka, A.

Gérard, D.

Gong, L.

Groß, P.

Gu, D.

Y. Wu, F. Huang, D. Gu, F. Gan, “Organic materials for recordable blue laser optical storage,” Proc. SPIE 5966, 59661E (2005).
[CrossRef]

Guo, W.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Haber, L. H.

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, R. J. Saykally, “Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B 106(34), 8489–8492 (2002).
[CrossRef]

Hajek, K. M.

Hao, X.

X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[CrossRef]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

Hayazawa, N.

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43(5), 656–661 (2012).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

He, X. N.

Herek, J. L.

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Huang, F.

Y. Wu, F. Huang, D. Gu, F. Gan, “Organic materials for recordable blue laser optical storage,” Proc. SPIE 5966, 59661E (2005).
[CrossRef]

Huang, X.

Huang, Z.

J. Lin, K. Z. J. Er, W. Zheng, Z. Huang, “Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging,” Appl. Phys. Lett. 103(8), 083705 (2013).
[CrossRef]

P. K. Upputuri, J. Lin, L. Gong, X.-Y. Liu, H. Wang, Z. Huang, “Circularly polarized coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(8), 1262–1264 (2013).
[CrossRef] [PubMed]

Huff, T. B.

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

Jiang, L.

Jiang, L. J.

Kawata, S.

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43(5), 656–661 (2012).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Krishnamachari, V. V.

A. Nikolaenko, V. V. Krishnamachari, E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 013823 (2009).
[CrossRef] [PubMed]

Kuang, C.

X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[CrossRef]

Lee, C. J.

Lee, L. F.

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, R. J. Saykally, “Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B 106(34), 8489–8492 (2002).
[CrossRef]

Lee, S.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[CrossRef]

Li, L.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Li, X.

Li, Y.

X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[CrossRef]

Lin, I. C.

Lin, J.

J. Lin, K. Z. J. Er, W. Zheng, Z. Huang, “Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging,” Appl. Phys. Lett. 103(8), 083705 (2013).
[CrossRef]

P. K. Upputuri, J. Lin, L. Gong, X.-Y. Liu, H. Wang, Z. Huang, “Circularly polarized coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(8), 1262–1264 (2013).
[CrossRef] [PubMed]

Lin, S. K.

Littleton, B.

Liu, L.

Liu, X.

X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[CrossRef]

Liu, X.-Y.

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Lu, Y. F.

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

McIntyre, T. J.

Nikolaenko, A.

A. Nikolaenko, V. V. Krishnamachari, E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 013823 (2009).
[CrossRef] [PubMed]

Offerhaus, H. L.

Okamoto, T.

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43(5), 656–661 (2012).
[CrossRef]

Palanker, D.

Piché, M.

Popov, E.

Potma, E. O.

A. Nikolaenko, V. V. Krishnamachari, E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 013823 (2009).
[CrossRef] [PubMed]

Rigneault, H.

Rubinsztein-Dunlop, H.

Saykally, R. J.

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, R. J. Saykally, “Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B 106(34), 8489–8492 (2002).
[CrossRef]

Schaller, R. D.

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, R. J. Saykally, “Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B 106(34), 8489–8492 (2002).
[CrossRef]

Shi, R.

H. Wang, Y. Fu, P. Zickmund, R. Shi, J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

Silvain, J. F.

Simanovskii, D.

Stout, B.

Taflove, A.

Toytman, I.

Tsai, D. P.

Turk, D.

Upputuri, P. K.

Volkmer, A.

J.-X. Cheng, A. Volkmer, X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
[CrossRef]

A. Volkmer, J.-X. Cheng, X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. Dal Negro, V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[CrossRef]

Wang, H.

Wang, H.-W.

Wang, Z.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Wenger, J.

Wu, Y.

Y. Wu, F. Huang, D. Gu, F. Gan, “Organic materials for recordable blue laser optical storage,” Proc. SPIE 5966, 59661E (2005).
[CrossRef]

Xie, X. S.

J.-X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

J.-X. Cheng, A. Volkmer, X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
[CrossRef]

A. Volkmer, J.-X. Cheng, X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

Xiong, W.

Zhang, H.

X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[CrossRef]

Zheng, W.

J. Lin, K. Z. J. Er, W. Zheng, Z. Huang, “Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging,” Appl. Phys. Lett. 103(8), 083705 (2013).
[CrossRef]

Zhou, Y. S.

Zickmund, P.

H. Wang, Y. Fu, P. Zickmund, R. Shi, J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

Ziegelbauer, J.

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, R. J. Saykally, “Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B 106(34), 8489–8492 (2002).
[CrossRef]

Appl. Phys. Lett.

J. Lin, K. Z. J. Er, W. Zheng, Z. Huang, “Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging,” Appl. Phys. Lett. 103(8), 083705 (2013).
[CrossRef]

X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[CrossRef]

A. Darafsheh, G. F. Walsh, L. Dal Negro, V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[CrossRef]

Biophys. J.

H. Wang, Y. Fu, P. Zickmund, R. Shi, J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

J. Opt.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

J.-X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, R. J. Saykally, “Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B 106(34), 8489–8492 (2002).
[CrossRef]

J. Raman Spectrosc.

K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43(5), 656–661 (2012).
[CrossRef]

Nat. Commun.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Opt. Express

A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
[CrossRef] [PubMed]

S. K. Lin, I. C. Lin, D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

Y. Fu, T. B. Huff, H.-W. Wang, H. Wang, J.-X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16(24), 19396–19409 (2008).
[CrossRef] [PubMed]

K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
[CrossRef] [PubMed]

I. Toytman, D. Simanovskii, D. Palanker, “On illumination schemes for wide-field CARS microscopy,” Opt. Express 17(9), 7339–7347 (2009).
[CrossRef] [PubMed]

W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[CrossRef] [PubMed]

X. Huang, X. N. He, W. Xiong, Y. Gao, L. J. Jiang, L. Liu, Y. S. Zhou, L. Jiang, J. F. Silvain, Y. F. Lu, “Contrast enhancement using silica microspheres in coherent anti-Stokes Raman spectroscopic imaging,” Opt. Express 22(3), 2889–2896 (2014).
[CrossRef] [PubMed]

X. Li, Z. Chen, A. Taflove, V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

A. Nikolaenko, V. V. Krishnamachari, E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 013823 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. Volkmer, J.-X. Cheng, X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

Proc. SPIE

Y. Wu, F. Huang, D. Gu, F. Gan, “Organic materials for recordable blue laser optical storage,” Proc. SPIE 5966, 59661E (2005).
[CrossRef]

Other

H. Kubo, “Optical disc and optical recording method,” E. P. Patent 1860656 A1 (2007).

G. Socrates, Infrared and Raman Characteristic Group Frequencies (John Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Detailed sketch of the microsphere imaging region: 1.1 mm-thick-polycarbonate substrate (SB) layer, 20 nm-thick reflective (RF) layer, 20 nm-thick recording (RC) layer, photonic nanojet (PNJ), Microsphere (MS), (b) Atomic force microscopy (AFM) image of the RC layer shows 200 nm width stripes separated by 20 nm deep and 100 nm width groove. The height-color bar is on the right side of the image. (c) An image acquired with a white light microscope with a 100X 0.9-NA objective through 3-µm SiO2 spheres on the RC layer, (d) Scanning electron microscopy (SEM) image of a few microspheres on the disc sample. (e) Schematic of the epi-CARS microscope. MO-W: water immersion objective; DM: 650 nm short-pass dichroic mirror; BPF: 650/60 nm band-pass filter; FL: focusing lens; PMT: Photomultiplier tube.

Fig. 2
Fig. 2

E-CARS images of three samples with spheres of diameters in the range 1-4 μm [(a), (b)], 1-5 μm [(d), (e)] and 1-6μm [(g), (h)] on the surface. The insets in (b) are the images of the same sphere at the Raman shift of 2840 cm−1 and 3160 cm−1, respectively. Intensity profiles along the line indicated by letters p to u are shown in (c), (f), (i). z is the focal plane position relative to the RC layer.

Fig. 3
Fig. 3

An example of numerical simulation done by using Finite Element Method (FEM). (a) Cross-sectional view of the local intensity distribution (|E|2) around a single sphere (n = 1.46, D = 5.0 μm) on a substrate. The incident laser (λ = 800 nm) beam is linearly polarized and propagates along the z-axis. The focus of Gaussian beam is identified with ‘O’ which is + 7μm above the RC layer. The dark line consists of a 20 nm flat layer with n = 1.6 and a 20 nm flat silver layer. (b) Line scan profiles showing a shift in the nanojet position (δ = 0.74 μm) when the microsphere is shifted in the x-direction for Δ = 1 μm. The M is calculated to be 3.8. (c) The magnified view of nanojet when x = 0 μm, i.e., the sphere is centered. (d) The magnified view of nanojet when x = 1 μm.

Fig. 4
Fig. 4

Lateral magnification obtained by 4, 5, 6 μm-diameter SiO2 spheres on the Blu-ray disc as a function of focal plane position z. The circles (o) and triangles (Δ) represent the experimental and simulation results, respectively.

Tables (1)

Tables Icon

Table 1 Magnification factor calculated from the CARS intensity profiles in Fig. 2.

Metrics