Abstract

Here we propose a new design of an on-chip micro-flow cytometry based on photonic crystals. When individual cells flow tangential to the crystal surface, the transmission of the light through the photonic crystal changes depending on the presence or absence of the cells and their size and shape. This system was modeled using OptiFDTD, where transmission spectra were extracted. Initially, the potential for cell counting has been demonstrated. Then, for cells with differing shape a direct relation between signal distribution and cell shape has been found.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. D. Laerum, T. Farsund, “Clinical Application of Flow Cytometry: a review,” Cytometry 2(1), 1–13 (1981).
    [CrossRef] [PubMed]
  2. P. Mullaney, J. Jett, “Flow Cytometry: An Overview,” Lasers Biol. Med. 34, 179–193 (1980).
    [CrossRef]
  3. R. Chang, “Flow cytometry’s new scalability,” BioOptics World, (2008). http://www.bioopticsworld.com/articles/print/volume-1/issue-4/features/feature-focus/flow-cytometryrsquos-new-scalability.html
  4. M. May, “Optical Diagnostics/Flow Cytometry: Advances in optical biodetection,” BioOptics World, (2013). http://www.bioopticsworld.com/articles/print/volume-6/issue-1/features/advances-in-optical-biodetection.html
  5. S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
    [CrossRef] [PubMed]
  6. D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
    [CrossRef] [PubMed]
  7. S. Y. Yang, K. Y. Lien, K. J. Huang, H. Y. Lei, G. B. Lee, “Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection,” Biosens. Bioelectron. 24(4), 855–868 (2008).
    [CrossRef] [PubMed]
  8. H. T. Huang, T. R. Ger, Y. H. Lin, Z. H. Wei, “Single cell detection using a magnetic zigzag nanowire biosensor,” Lab Chip 13(15), 3098–3104 (2013).
    [CrossRef] [PubMed]
  9. T. R. Ger, H. T. Huang, C. Y. Huang, M. F. Lai, “Single cell detection using 3D magnetic rolled-up structures,” Lab Chip 13(21), 4225–4230 (2013).
    [CrossRef] [PubMed]
  10. S. C. Hur, H. T. Tse, D. Di Carlo, “Sheathless inertial cell ordering for extreme throughput flow cytometry,” Lab Chip 10(3), 274–280 (2010).
    [CrossRef] [PubMed]
  11. G. Lee, C. Lin, G. Chang, “Micro flow cytometers with buried SU-8/SOG optical waveguides,” Sens. Actuators A Phys. 103(1-2), 165–170 (2003).
    [CrossRef]
  12. A. L. Pyayt, D. A. Fattal, Zh. Li, R. G. Beausoleil, “Nanoengineered optical resonance sensor for composite material refractive-index measurements,” Appl. Opt. 48(14), 2613–2618 (2009).
    [CrossRef] [PubMed]
  13. D. Fattal, M. Sigalas, A. L. Pyajt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity”, Proc. SPIE 6640, 66400M (2007).
  14. N. Watkins, B. M. Venkatesan, M. Toner, W. Rodriguez, R. Bashir, “A robust electrical microcytometer with 3-dimensional hydrofocusing,” Lab Chip 9(22), 3177–3184 (2009).
    [CrossRef] [PubMed]
  15. A. J. Chung, D. R. Gossett, D. Di Carlo, “Three dimensional, Sheathless, and High-Throughput Microparticle Inertial Focusing Through Geometry-Induced Secondary Flows,” Small 9(5), 685–690 (2013).
    [CrossRef] [PubMed]
  16. X. Xuan, J. Zhu, C. Church, “Particle focusing in microfluidic devices,” Microfluid. Nanofluid. 9(1), 1–16 (2010).
    [CrossRef]
  17. http://optiwave.com/category/products/component-design/optifdtd/
  18. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982).
    [CrossRef] [PubMed]
  19. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
    [CrossRef]
  20. Y. L. Jin, J. Y. Chen, L. Xu, P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(20), N371–N379 (2006).
    [CrossRef] [PubMed]
  21. T. R. Gregory, “The Bigger the C-Value, the Larger the Cell: Genome Size and Red Blood Cell Size in Vertebrates,” Blood Cells Mol. Dis. 27(5), 830–843 (2001).
    [CrossRef] [PubMed]
  22. W. Jin, Y. Wang, N. Ren, M. Bu, X. Shang, Y. Xu, Y. Chen, “Simulation of simultaneous measurement for red blood cell thickness and refractive index,” Opt. Lasers Eng. 50(2), 154–158 (2012).
    [CrossRef]
  23. V. Maltsev, A. Hoekstra, and M. Yurkin, “Optics of White Blood Cells: Optical Models, Simulations, and Experiments,” in Advanced Optical Flow Cytometry: Methods and Disease Diagnoses, (Academic, 2011), pp. 63–93.

2013 (3)

H. T. Huang, T. R. Ger, Y. H. Lin, Z. H. Wei, “Single cell detection using a magnetic zigzag nanowire biosensor,” Lab Chip 13(15), 3098–3104 (2013).
[CrossRef] [PubMed]

T. R. Ger, H. T. Huang, C. Y. Huang, M. F. Lai, “Single cell detection using 3D magnetic rolled-up structures,” Lab Chip 13(21), 4225–4230 (2013).
[CrossRef] [PubMed]

A. J. Chung, D. R. Gossett, D. Di Carlo, “Three dimensional, Sheathless, and High-Throughput Microparticle Inertial Focusing Through Geometry-Induced Secondary Flows,” Small 9(5), 685–690 (2013).
[CrossRef] [PubMed]

2012 (1)

W. Jin, Y. Wang, N. Ren, M. Bu, X. Shang, Y. Xu, Y. Chen, “Simulation of simultaneous measurement for red blood cell thickness and refractive index,” Opt. Lasers Eng. 50(2), 154–158 (2012).
[CrossRef]

2010 (2)

X. Xuan, J. Zhu, C. Church, “Particle focusing in microfluidic devices,” Microfluid. Nanofluid. 9(1), 1–16 (2010).
[CrossRef]

S. C. Hur, H. T. Tse, D. Di Carlo, “Sheathless inertial cell ordering for extreme throughput flow cytometry,” Lab Chip 10(3), 274–280 (2010).
[CrossRef] [PubMed]

2009 (3)

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

A. L. Pyayt, D. A. Fattal, Zh. Li, R. G. Beausoleil, “Nanoengineered optical resonance sensor for composite material refractive-index measurements,” Appl. Opt. 48(14), 2613–2618 (2009).
[CrossRef] [PubMed]

N. Watkins, B. M. Venkatesan, M. Toner, W. Rodriguez, R. Bashir, “A robust electrical microcytometer with 3-dimensional hydrofocusing,” Lab Chip 9(22), 3177–3184 (2009).
[CrossRef] [PubMed]

2008 (2)

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[CrossRef] [PubMed]

S. Y. Yang, K. Y. Lien, K. J. Huang, H. Y. Lei, G. B. Lee, “Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection,” Biosens. Bioelectron. 24(4), 855–868 (2008).
[CrossRef] [PubMed]

2006 (1)

Y. L. Jin, J. Y. Chen, L. Xu, P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(20), N371–N379 (2006).
[CrossRef] [PubMed]

2003 (1)

G. Lee, C. Lin, G. Chang, “Micro flow cytometers with buried SU-8/SOG optical waveguides,” Sens. Actuators A Phys. 103(1-2), 165–170 (2003).
[CrossRef]

2001 (1)

T. R. Gregory, “The Bigger the C-Value, the Larger the Cell: Genome Size and Red Blood Cell Size in Vertebrates,” Blood Cells Mol. Dis. 27(5), 830–843 (2001).
[CrossRef] [PubMed]

1999 (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[CrossRef]

1982 (1)

1981 (1)

O. D. Laerum, T. Farsund, “Clinical Application of Flow Cytometry: a review,” Cytometry 2(1), 1–13 (1981).
[CrossRef] [PubMed]

1980 (1)

P. Mullaney, J. Jett, “Flow Cytometry: An Overview,” Lasers Biol. Med. 34, 179–193 (1980).
[CrossRef]

Ateya, D. A.

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[CrossRef] [PubMed]

Bååk, T.

Bashir, R.

N. Watkins, B. M. Venkatesan, M. Toner, W. Rodriguez, R. Bashir, “A robust electrical microcytometer with 3-dimensional hydrofocusing,” Lab Chip 9(22), 3177–3184 (2009).
[CrossRef] [PubMed]

Beausoleil, R. G.

Bu, M.

W. Jin, Y. Wang, N. Ren, M. Bu, X. Shang, Y. Xu, Y. Chen, “Simulation of simultaneous measurement for red blood cell thickness and refractive index,” Opt. Lasers Eng. 50(2), 154–158 (2012).
[CrossRef]

Chang, G.

G. Lee, C. Lin, G. Chang, “Micro flow cytometers with buried SU-8/SOG optical waveguides,” Sens. Actuators A Phys. 103(1-2), 165–170 (2003).
[CrossRef]

Chen, J. Y.

Y. L. Jin, J. Y. Chen, L. Xu, P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(20), N371–N379 (2006).
[CrossRef] [PubMed]

Chen, Y.

W. Jin, Y. Wang, N. Ren, M. Bu, X. Shang, Y. Xu, Y. Chen, “Simulation of simultaneous measurement for red blood cell thickness and refractive index,” Opt. Lasers Eng. 50(2), 154–158 (2012).
[CrossRef]

Chung, A. J.

A. J. Chung, D. R. Gossett, D. Di Carlo, “Three dimensional, Sheathless, and High-Throughput Microparticle Inertial Focusing Through Geometry-Induced Secondary Flows,” Small 9(5), 685–690 (2013).
[CrossRef] [PubMed]

Church, C.

X. Xuan, J. Zhu, C. Church, “Particle focusing in microfluidic devices,” Microfluid. Nanofluid. 9(1), 1–16 (2010).
[CrossRef]

Di Carlo, D.

A. J. Chung, D. R. Gossett, D. Di Carlo, “Three dimensional, Sheathless, and High-Throughput Microparticle Inertial Focusing Through Geometry-Induced Secondary Flows,” Small 9(5), 685–690 (2013).
[CrossRef] [PubMed]

S. C. Hur, H. T. Tse, D. Di Carlo, “Sheathless inertial cell ordering for extreme throughput flow cytometry,” Lab Chip 10(3), 274–280 (2010).
[CrossRef] [PubMed]

Erickson, J. S.

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[CrossRef] [PubMed]

Erlinger, A.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

Farsund, T.

O. D. Laerum, T. Farsund, “Clinical Application of Flow Cytometry: a review,” Cytometry 2(1), 1–13 (1981).
[CrossRef] [PubMed]

Fattal, D. A.

Ger, T. R.

H. T. Huang, T. R. Ger, Y. H. Lin, Z. H. Wei, “Single cell detection using a magnetic zigzag nanowire biosensor,” Lab Chip 13(15), 3098–3104 (2013).
[CrossRef] [PubMed]

T. R. Ger, H. T. Huang, C. Y. Huang, M. F. Lai, “Single cell detection using 3D magnetic rolled-up structures,” Lab Chip 13(21), 4225–4230 (2013).
[CrossRef] [PubMed]

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[CrossRef]

Golden, J. P.

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[CrossRef] [PubMed]

Gossett, D. R.

A. J. Chung, D. R. Gossett, D. Di Carlo, “Three dimensional, Sheathless, and High-Throughput Microparticle Inertial Focusing Through Geometry-Induced Secondary Flows,” Small 9(5), 685–690 (2013).
[CrossRef] [PubMed]

Gregory, T. R.

T. R. Gregory, “The Bigger the C-Value, the Larger the Cell: Genome Size and Red Blood Cell Size in Vertebrates,” Blood Cells Mol. Dis. 27(5), 830–843 (2001).
[CrossRef] [PubMed]

Hilliard, L. R.

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[CrossRef] [PubMed]

Howell, P. B.

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[CrossRef] [PubMed]

Huang, C. Y.

T. R. Ger, H. T. Huang, C. Y. Huang, M. F. Lai, “Single cell detection using 3D magnetic rolled-up structures,” Lab Chip 13(21), 4225–4230 (2013).
[CrossRef] [PubMed]

Huang, H. T.

T. R. Ger, H. T. Huang, C. Y. Huang, M. F. Lai, “Single cell detection using 3D magnetic rolled-up structures,” Lab Chip 13(21), 4225–4230 (2013).
[CrossRef] [PubMed]

H. T. Huang, T. R. Ger, Y. H. Lin, Z. H. Wei, “Single cell detection using a magnetic zigzag nanowire biosensor,” Lab Chip 13(15), 3098–3104 (2013).
[CrossRef] [PubMed]

Huang, K. J.

S. Y. Yang, K. Y. Lien, K. J. Huang, H. Y. Lei, G. B. Lee, “Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection,” Biosens. Bioelectron. 24(4), 855–868 (2008).
[CrossRef] [PubMed]

Hur, S. C.

S. C. Hur, H. T. Tse, D. Di Carlo, “Sheathless inertial cell ordering for extreme throughput flow cytometry,” Lab Chip 10(3), 274–280 (2010).
[CrossRef] [PubMed]

Jett, J.

P. Mullaney, J. Jett, “Flow Cytometry: An Overview,” Lasers Biol. Med. 34, 179–193 (1980).
[CrossRef]

Jin, W.

W. Jin, Y. Wang, N. Ren, M. Bu, X. Shang, Y. Xu, Y. Chen, “Simulation of simultaneous measurement for red blood cell thickness and refractive index,” Opt. Lasers Eng. 50(2), 154–158 (2012).
[CrossRef]

Jin, Y. L.

Y. L. Jin, J. Y. Chen, L. Xu, P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(20), N371–N379 (2006).
[CrossRef] [PubMed]

Laerum, O. D.

O. D. Laerum, T. Farsund, “Clinical Application of Flow Cytometry: a review,” Cytometry 2(1), 1–13 (1981).
[CrossRef] [PubMed]

Lai, M. F.

T. R. Ger, H. T. Huang, C. Y. Huang, M. F. Lai, “Single cell detection using 3D magnetic rolled-up structures,” Lab Chip 13(21), 4225–4230 (2013).
[CrossRef] [PubMed]

Lee, G.

G. Lee, C. Lin, G. Chang, “Micro flow cytometers with buried SU-8/SOG optical waveguides,” Sens. Actuators A Phys. 103(1-2), 165–170 (2003).
[CrossRef]

Lee, G. B.

S. Y. Yang, K. Y. Lien, K. J. Huang, H. Y. Lei, G. B. Lee, “Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection,” Biosens. Bioelectron. 24(4), 855–868 (2008).
[CrossRef] [PubMed]

Lei, H. Y.

S. Y. Yang, K. Y. Lien, K. J. Huang, H. Y. Lei, G. B. Lee, “Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection,” Biosens. Bioelectron. 24(4), 855–868 (2008).
[CrossRef] [PubMed]

Li, Zh.

Lien, K. Y.

S. Y. Yang, K. Y. Lien, K. J. Huang, H. Y. Lei, G. B. Lee, “Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection,” Biosens. Bioelectron. 24(4), 855–868 (2008).
[CrossRef] [PubMed]

Ligler, F. S.

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[CrossRef] [PubMed]

Lin, C.

G. Lee, C. Lin, G. Chang, “Micro flow cytometers with buried SU-8/SOG optical waveguides,” Sens. Actuators A Phys. 103(1-2), 165–170 (2003).
[CrossRef]

Lin, Y. H.

H. T. Huang, T. R. Ger, Y. H. Lin, Z. H. Wei, “Single cell detection using a magnetic zigzag nanowire biosensor,” Lab Chip 13(15), 3098–3104 (2013).
[CrossRef] [PubMed]

Mullaney, P.

P. Mullaney, J. Jett, “Flow Cytometry: An Overview,” Lasers Biol. Med. 34, 179–193 (1980).
[CrossRef]

Ozcan, A.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

Pyayt, A. L.

Ren, N.

W. Jin, Y. Wang, N. Ren, M. Bu, X. Shang, Y. Xu, Y. Chen, “Simulation of simultaneous measurement for red blood cell thickness and refractive index,” Opt. Lasers Eng. 50(2), 154–158 (2012).
[CrossRef]

Rodriguez, W.

N. Watkins, B. M. Venkatesan, M. Toner, W. Rodriguez, R. Bashir, “A robust electrical microcytometer with 3-dimensional hydrofocusing,” Lab Chip 9(22), 3177–3184 (2009).
[CrossRef] [PubMed]

Seo, S.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

Shang, X.

W. Jin, Y. Wang, N. Ren, M. Bu, X. Shang, Y. Xu, Y. Chen, “Simulation of simultaneous measurement for red blood cell thickness and refractive index,” Opt. Lasers Eng. 50(2), 154–158 (2012).
[CrossRef]

Su, T. W.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

Toner, M.

N. Watkins, B. M. Venkatesan, M. Toner, W. Rodriguez, R. Bashir, “A robust electrical microcytometer with 3-dimensional hydrofocusing,” Lab Chip 9(22), 3177–3184 (2009).
[CrossRef] [PubMed]

Tse, H. T.

S. C. Hur, H. T. Tse, D. Di Carlo, “Sheathless inertial cell ordering for extreme throughput flow cytometry,” Lab Chip 10(3), 274–280 (2010).
[CrossRef] [PubMed]

Tseng, D. K.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

Venkatesan, B. M.

N. Watkins, B. M. Venkatesan, M. Toner, W. Rodriguez, R. Bashir, “A robust electrical microcytometer with 3-dimensional hydrofocusing,” Lab Chip 9(22), 3177–3184 (2009).
[CrossRef] [PubMed]

Wang, P. N.

Y. L. Jin, J. Y. Chen, L. Xu, P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(20), N371–N379 (2006).
[CrossRef] [PubMed]

Wang, Y.

W. Jin, Y. Wang, N. Ren, M. Bu, X. Shang, Y. Xu, Y. Chen, “Simulation of simultaneous measurement for red blood cell thickness and refractive index,” Opt. Lasers Eng. 50(2), 154–158 (2012).
[CrossRef]

Watkins, N.

N. Watkins, B. M. Venkatesan, M. Toner, W. Rodriguez, R. Bashir, “A robust electrical microcytometer with 3-dimensional hydrofocusing,” Lab Chip 9(22), 3177–3184 (2009).
[CrossRef] [PubMed]

Wei, Z. H.

H. T. Huang, T. R. Ger, Y. H. Lin, Z. H. Wei, “Single cell detection using a magnetic zigzag nanowire biosensor,” Lab Chip 13(15), 3098–3104 (2013).
[CrossRef] [PubMed]

Xu, L.

Y. L. Jin, J. Y. Chen, L. Xu, P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(20), N371–N379 (2006).
[CrossRef] [PubMed]

Xu, Y.

W. Jin, Y. Wang, N. Ren, M. Bu, X. Shang, Y. Xu, Y. Chen, “Simulation of simultaneous measurement for red blood cell thickness and refractive index,” Opt. Lasers Eng. 50(2), 154–158 (2012).
[CrossRef]

Xuan, X.

X. Xuan, J. Zhu, C. Church, “Particle focusing in microfluidic devices,” Microfluid. Nanofluid. 9(1), 1–16 (2010).
[CrossRef]

Yang, S. Y.

S. Y. Yang, K. Y. Lien, K. J. Huang, H. Y. Lei, G. B. Lee, “Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection,” Biosens. Bioelectron. 24(4), 855–868 (2008).
[CrossRef] [PubMed]

Zhu, J.

X. Xuan, J. Zhu, C. Church, “Particle focusing in microfluidic devices,” Microfluid. Nanofluid. 9(1), 1–16 (2010).
[CrossRef]

Anal. Bioanal. Chem. (1)

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biosens. Bioelectron. (1)

S. Y. Yang, K. Y. Lien, K. J. Huang, H. Y. Lei, G. B. Lee, “Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection,” Biosens. Bioelectron. 24(4), 855–868 (2008).
[CrossRef] [PubMed]

Blood Cells Mol. Dis. (1)

T. R. Gregory, “The Bigger the C-Value, the Larger the Cell: Genome Size and Red Blood Cell Size in Vertebrates,” Blood Cells Mol. Dis. 27(5), 830–843 (2001).
[CrossRef] [PubMed]

Cytometry (1)

O. D. Laerum, T. Farsund, “Clinical Application of Flow Cytometry: a review,” Cytometry 2(1), 1–13 (1981).
[CrossRef] [PubMed]

Lab Chip (5)

H. T. Huang, T. R. Ger, Y. H. Lin, Z. H. Wei, “Single cell detection using a magnetic zigzag nanowire biosensor,” Lab Chip 13(15), 3098–3104 (2013).
[CrossRef] [PubMed]

T. R. Ger, H. T. Huang, C. Y. Huang, M. F. Lai, “Single cell detection using 3D magnetic rolled-up structures,” Lab Chip 13(21), 4225–4230 (2013).
[CrossRef] [PubMed]

S. C. Hur, H. T. Tse, D. Di Carlo, “Sheathless inertial cell ordering for extreme throughput flow cytometry,” Lab Chip 10(3), 274–280 (2010).
[CrossRef] [PubMed]

N. Watkins, B. M. Venkatesan, M. Toner, W. Rodriguez, R. Bashir, “A robust electrical microcytometer with 3-dimensional hydrofocusing,” Lab Chip 9(22), 3177–3184 (2009).
[CrossRef] [PubMed]

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

Lasers Biol. Med. (1)

P. Mullaney, J. Jett, “Flow Cytometry: An Overview,” Lasers Biol. Med. 34, 179–193 (1980).
[CrossRef]

Microfluid. Nanofluid. (1)

X. Xuan, J. Zhu, C. Church, “Particle focusing in microfluidic devices,” Microfluid. Nanofluid. 9(1), 1–16 (2010).
[CrossRef]

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[CrossRef]

Opt. Lasers Eng. (1)

W. Jin, Y. Wang, N. Ren, M. Bu, X. Shang, Y. Xu, Y. Chen, “Simulation of simultaneous measurement for red blood cell thickness and refractive index,” Opt. Lasers Eng. 50(2), 154–158 (2012).
[CrossRef]

Phys. Med. Biol. (1)

Y. L. Jin, J. Y. Chen, L. Xu, P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(20), N371–N379 (2006).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

G. Lee, C. Lin, G. Chang, “Micro flow cytometers with buried SU-8/SOG optical waveguides,” Sens. Actuators A Phys. 103(1-2), 165–170 (2003).
[CrossRef]

Small (1)

A. J. Chung, D. R. Gossett, D. Di Carlo, “Three dimensional, Sheathless, and High-Throughput Microparticle Inertial Focusing Through Geometry-Induced Secondary Flows,” Small 9(5), 685–690 (2013).
[CrossRef] [PubMed]

Other (5)

D. Fattal, M. Sigalas, A. L. Pyajt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity”, Proc. SPIE 6640, 66400M (2007).

http://optiwave.com/category/products/component-design/optifdtd/

R. Chang, “Flow cytometry’s new scalability,” BioOptics World, (2008). http://www.bioopticsworld.com/articles/print/volume-1/issue-4/features/feature-focus/flow-cytometryrsquos-new-scalability.html

M. May, “Optical Diagnostics/Flow Cytometry: Advances in optical biodetection,” BioOptics World, (2013). http://www.bioopticsworld.com/articles/print/volume-6/issue-1/features/advances-in-optical-biodetection.html

V. Maltsev, A. Hoekstra, and M. Yurkin, “Optics of White Blood Cells: Optical Models, Simulations, and Experiments,” in Advanced Optical Flow Cytometry: Methods and Disease Diagnoses, (Academic, 2011), pp. 63–93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Theoretical layout of the device on chip where cell focusing is conducted on the left and optical detection using Ph.C. on the right. (b) Cross Sectional view of the Ph.C. Here the material in grey represents silicon dioxide, blue - silicon nitride core of the Ph.C., yellow - surrounding medium, and the red object is a red blood cell.

Fig. 2
Fig. 2

Calculated transmission spectrum of the Ph.C. (black) as compared to a disrupted optical waveguide (red) of equal thickness.

Fig. 3
Fig. 3

Electric field (Ey) distribution through the Ph.C. immersed in plasma for the (a) Band gap wavelength 490.0 nm, and (b) Peak transmission wavelength 513.3 nm.

Fig. 4
Fig. 4

Peak transmission spectrum for different media, with and without a red blood cell.

Fig. 5
Fig. 5

Heat map displaying difference in transmission caused by cell movement (d = 7μm) for the spectral range 520-533 nm

Fig. 6
Fig. 6

Transmission change corresponding to three cells flowing in series, detection conducted at λ = 475.8 nm.

Fig. 7
Fig. 7

Change in transmission for different cell types – red blood cell (red) and white blood cell (blue), λ = 528.5 nm.

Fig. 8
Fig. 8

Change in transmission for cells of different size, λ = 524.1 nm. a) Change of transmission for blood cells of various diameters (6-8 μm) w.r.t. cell displacement in the microfluidic channel. b) Numerical integration of area under transmission change curves. c) Correlation between blood cell diameter and the area under the transmission change curves.

Metrics