Abstract

This paper describes the first demonstration of ultraviolet (266nm) vortex generation using the combination of a frequency-doubled nanosecond green laser, a spiral phase plate, and a periodically bonded β-BaB2O4 device. For a laser pumping energy of 9.1 mJ, an ultraviolet vortex energy of 1.24 mJ was obtained, corresponding to a conversion efficiency of 13.7%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  2. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
    [Crossref]
  3. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
    [Crossref]
  4. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics42, E. Wolf, ed. (Elsevier, 2001), pp. 219–176.
  5. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon 3(2), 161–204 (2011).
    [Crossref]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  7. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
    [Crossref]
  8. M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38(22), 4919–4922 (2013).
    [Crossref] [PubMed]
  9. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4154 .
    [Crossref] [PubMed]
  10. Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17(26), 24198–24207 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24198 .
    [Crossref] [PubMed]
  11. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  12. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  13. Y. Ueno, Y. Toda, S. Adachi, R. Morita, and T. Tawara, “Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing,” Opt. Express 17(22), 20567–20574 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20567 .
    [Crossref] [PubMed]
  14. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17967 .
    [Crossref] [PubMed]
  15. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012), doi:.
    [Crossref] [PubMed]
  16. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [Crossref]
  17. M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci Rep 4, 4281 (2014).
    [Crossref] [PubMed]
  18. B. Terhalle, A. Langner, B. Päivänranta, V. A. Guzenko, C. David, and Y. Ekinci, “Generation of extreme ultraviolet vortex beams using computer generated holograms,” Opt. Lett. 36(21), 4143–4145 (2011).
    [Crossref] [PubMed]
  19. S. M. Li, L. J. Kong, Z. C. Ren, Y. Li, C. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
    [Crossref]
  20. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6(4), 616–621 (1989).
    [Crossref]
  21. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [Crossref]
  22. C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B 80(1), 1–25 (2005).
    [Crossref]
  23. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011).
    [Crossref] [PubMed]
  24. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
    [Crossref] [PubMed]
  25. K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
    [Crossref]
  26. T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
    [Crossref]
  27. A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
    [Crossref]
  28. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [Crossref]

2014 (1)

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci Rep 4, 4281 (2014).
[Crossref] [PubMed]

2013 (4)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38(22), 4919–4922 (2013).
[Crossref] [PubMed]

S. M. Li, L. J. Kong, Z. C. Ren, Y. Li, C. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

2012 (2)

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012), doi:.
[Crossref] [PubMed]

2011 (3)

2010 (1)

2009 (2)

2008 (1)

2007 (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

2005 (1)

C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B 80(1), 1–25 (2005).
[Crossref]

2004 (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

1998 (1)

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

1996 (1)

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

1993 (1)

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[Crossref]

1992 (3)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

1989 (1)

Adachi, S.

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Aoki, N.

Arita, Y.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Berzanskis, A.

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Chen, C.

C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B 80(1), 1–25 (2005).
[Crossref]

C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6(4), 616–621 (1989).
[Crossref]

Chen, M.

Chujo, K.

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

David, C.

Dholakia, K.

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38(22), 4919–4922 (2013).
[Crossref] [PubMed]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

Ekinci, Y.

Elssner, G.

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Gibbesch, B.

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Guzenko, V. A.

Hara, K.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Harke, B.

Hell, S. W.

Hirose, T.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Indebetouw, G.

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[Crossref]

Jiang, A.

Juman, G.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci Rep 4, 4281 (2014).
[Crossref] [PubMed]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Keller, J.

Kong, L. J.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Li, C. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Koyama, M.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Langner, A.

Li, R.

Li, S. M.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Li, C. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

Li, Y.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Li, C. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

Lin, S.

Lin, Z.

C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B 80(1), 1–25 (2005).
[Crossref]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Matijosius, A.

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

Matsumoto, S.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Mazilu, M.

Miyamoto, K.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci Rep 4, 4281 (2014).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012), doi:.
[Crossref] [PubMed]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17967 .
[Crossref] [PubMed]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Morita, R.

Nagashima, W.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Nakamura, K.

Oka, K.

Okida, M.

Omatsu, T.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci Rep 4, 4281 (2014).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012), doi:.
[Crossref] [PubMed]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17967 .
[Crossref] [PubMed]

Onda, T.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Padgett, M.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon 3(2), 161–204 (2011).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

Päivänranta, B.

Piskarskas, A.

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ren, Z. C.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Li, C. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

Schönle, A.

Shimatake, K.

Shoji, I.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Simpson, N. B.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

Smilgevicius, V.

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Stabinis, A.

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

Suga, T.

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Takagi, H.

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Takahashi, F.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Takahashi, Y.

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Tanda, S.

Tawara, T.

Terhalle, B.

Toda, Y.

Tokizane, Y.

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012), doi:.
[Crossref] [PubMed]

Tsubota, M.

Tu, C.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Li, C. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ueno, Y.

Ullal, C. K.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Wang, H. T.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Li, C. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

Wang, Z.

C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B 80(1), 1–25 (2005).
[Crossref]

Watabe, M.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci Rep 4, 4281 (2014).
[Crossref] [PubMed]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Westphal, V.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wright, E. M.

Wu, B.

Wu, Y.

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon 3(2), 161–204 (2011).
[Crossref]

You, G.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Acta Metall. Mater. (1)

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Adv. Opt. Photon (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon 3(2), 161–204 (2011).
[Crossref]

Appl. Phys. B (1)

C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B 80(1), 1–25 (2005).
[Crossref]

Appl. Phys. Express (1)

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

J. Mod. Opt. (1)

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012), doi:.
[Crossref] [PubMed]

Nat. Phys. (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Nature (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Commun. (2)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150(1-6), 372–380 (1998).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (3)

S. M. Li, L. J. Kong, Z. C. Ren, Y. Li, C. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Sci Rep (1)

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci Rep 4, 4281 (2014).
[Crossref] [PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (1)

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics42, E. Wolf, ed. (Elsevier, 2001), pp. 219–176.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulated spatial profile for the frequency-doubled UV vortex output from (a) a 0.5-mm-long bulk BBO crystal, (b) a 2-mm-long bulk BBO crystal, and (c) 2-mm-long periodically bonded BBO device, shown schematically in (d).

Fig. 2
Fig. 2

Experimental setup used to produce UV vortices.

Fig. 3
Fig. 3

Experimental vortex outputs. (a), (b) Near- and far-field intensity profiles for a green vortex, and (c) self-interference fringes in the near field. (d), (e) Near- and far-field intensity profiles for the UV output from a 2-mm-long bulk BBO crystal, and (f) self-interference fringes. (g), (h) Near- and far-field intensity profiles for the UV output from a 2-mm-long periodically bonded BBO device, and (i) self-interference fringes in the near field.

Fig. 4
Fig. 4

Line-intensity profiles (along a broken line shown in Figs. 3(f) and 3(i)) of the UV outputs obtained by using (a) the bulk BBO crystal, and the periodically bonded BBO device.

Fig. 5
Fig. 5

(a) UV vortex output energy as a function of the green vortex energy. (b) UV vortex conversion efficiency as a function of the green vortex energy.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E 2 ω bulk ( x , y ) = 0 L ( E ω ( x , y + ρ z ) ) 2 d z = 0 L [ ( x + i ( y + ρ z ) ) exp ( x 2 + ( y + ρ z ) 2 ω 0 2 ) ] 2 d z ,
I 2 ω bulk ( x , y ) | E 2 ω bulk ( x , y ) | 2 .
I 2ω device (x,y)= | n=0 N1 nΛ (n+1)Λ [ ( x+i( y+ρz ) )exp( x 2 + ( y+ρz ) 2 ω 0 2 ) ] 2 dz | 2 ,

Metrics