Abstract

We report on strong backward stimulated emission at 337 nm in nitrogen gas pumped by circularly polarized femtosecond laser pulses at 800 nm. A distinct dependence of the backward UV spectrum on pump laser polarization and intensity is observed, pointing to the occurrence of backward amplified spontaneous emission inside filaments. We attribute the population inversion to inelastic collision between the free electrons produced by the pump laser and neutral N2 molecules. The addition of oxygen molecules is detrimental for the gain, reducing it to near threshold at atmospheric concentration.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dogariu, J. B. Michael, M. O. Scully, R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
    [CrossRef] [PubMed]
  2. D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
    [CrossRef]
  3. P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3130–3134 (2011).
    [CrossRef] [PubMed]
  4. V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
    [CrossRef] [PubMed]
  5. Q. Luo, W. Liu, S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B 76(3), 337–340 (2003).
    [CrossRef]
  6. P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98(21), 211102 (2011).
    [CrossRef]
  7. J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecule nitrogen,” J. Appl. Phys. 111(3), 033105 (2012).
    [CrossRef]
  8. S. Owada, A. Azarm, S. Hosseini, A. Iwasaki, S. L. Chin, K. Yamanouchi, “Amplified spontaneous C3Πu–B3Πg emission and rotational and vibrational state distributions in C3Πu state of N2 in femtosecond laser induced filament in air,” Chem. Phys. Lett. 581(21), 21–25 (2013).
    [CrossRef]
  9. J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
    [CrossRef]
  10. J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
    [CrossRef]
  11. H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
    [CrossRef]
  12. Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, “Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses,” Opt. Express 21(19), 22791–22798 (2013).
    [CrossRef] [PubMed]
  13. W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
    [CrossRef]
  14. T. Wang, J. Ju, J. F. Daigle, S. Yuan, R. Li, S. L. Chin, “Self-seeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air,” Laser Phys. Lett. 10(12), 125401 (2013).
    [CrossRef]
  15. D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, “Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen,” Phys. Rev. A 88(4), 041805 (2013).
    [CrossRef]
  16. G. Point, Y. Liu, Y. Brelet, S. Mitryukovskiy, P. Ding, A. Houard, A. Mysyrowicz, “Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser,” Opt. Lett. 39(7), 1725–1728 (2014).
    [CrossRef] [PubMed]
  17. J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).
  18. H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
    [CrossRef]
  19. M. Kolesik, J. V. Moloney, E. M. Wright, “Polarization dynamics of femtosecond pulses propagating in air,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64(4), 046607 (2001).
    [CrossRef] [PubMed]
  20. R. S. Kunabenchi, M. R. Gorbal, M. I. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9(4), 259–329 (1984).
    [CrossRef]
  21. J. T. Fons, R. S. Schappe, C. C. Lin, “Electron-impact excitation of the second positive band system (C3Πu→ B3Πg) and the C3Πu electronic state of the nitrogen molecule,” Phys. Rev. A 53(4), 2239–2247 (1996).
    [CrossRef] [PubMed]
  22. B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
    [CrossRef] [PubMed]
  23. E. Schulz, D. S. Steingrube, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, M. Kovačev, “Tracking spectral shapes and temporal dynamics along a femtosecond filament,” Opt. Express 19(20), 19495–19507 (2011).
    [CrossRef] [PubMed]
  24. Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filament: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
    [CrossRef]
  25. S. Mitryukovskiy, Y. Liu, A. Houard, A. Mysyrowicz, “A simple method to estimate the laser intensity in air filaments” (in preparation).

2014 (3)

2013 (6)

Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, “Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses,” Opt. Express 21(19), 22791–22798 (2013).
[CrossRef] [PubMed]

T. Wang, J. Ju, J. F. Daigle, S. Yuan, R. Li, S. L. Chin, “Self-seeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air,” Laser Phys. Lett. 10(12), 125401 (2013).
[CrossRef]

D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, “Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen,” Phys. Rev. A 88(4), 041805 (2013).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

S. Owada, A. Azarm, S. Hosseini, A. Iwasaki, S. L. Chin, K. Yamanouchi, “Amplified spontaneous C3Πu–B3Πg emission and rotational and vibrational state distributions in C3Πu state of N2 in femtosecond laser induced filament in air,” Chem. Phys. Lett. 581(21), 21–25 (2013).
[CrossRef]

2012 (2)

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[CrossRef]

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecule nitrogen,” J. Appl. Phys. 111(3), 033105 (2012).
[CrossRef]

2011 (7)

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

A. Dogariu, J. B. Michael, M. O. Scully, R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98(21), 211102 (2011).
[CrossRef]

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filament: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[CrossRef]

E. Schulz, D. S. Steingrube, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, M. Kovačev, “Tracking spectral shapes and temporal dynamics along a femtosecond filament,” Opt. Express 19(20), 19495–19507 (2011).
[CrossRef] [PubMed]

2009 (1)

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[CrossRef]

2005 (1)

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

2003 (1)

Q. Luo, W. Liu, S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B 76(3), 337–340 (2003).
[CrossRef]

2001 (1)

M. Kolesik, J. V. Moloney, E. M. Wright, “Polarization dynamics of femtosecond pulses propagating in air,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64(4), 046607 (2001).
[CrossRef] [PubMed]

1996 (1)

J. T. Fons, R. S. Schappe, C. C. Lin, “Electron-impact excitation of the second positive band system (C3Πu→ B3Πg) and the C3Πu electronic state of the nitrogen molecule,” Phys. Rev. A 53(4), 2239–2247 (1996).
[CrossRef] [PubMed]

1984 (1)

R. S. Kunabenchi, M. R. Gorbal, M. I. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9(4), 259–329 (1984).
[CrossRef]

Ališauskas, S.

D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, “Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen,” Phys. Rev. A 88(4), 041805 (2013).
[CrossRef]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[CrossRef]

Andriukaitis, G.

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[CrossRef]

Arissian, L.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Azarm, A.

S. Owada, A. Azarm, S. Hosseini, A. Iwasaki, S. L. Chin, K. Yamanouchi, “Amplified spontaneous C3Πu–B3Πg emission and rotational and vibrational state distributions in C3Πu state of N2 in femtosecond laser induced filament in air,” Chem. Phys. Lett. 581(21), 21–25 (2013).
[CrossRef]

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[CrossRef]

Baltuška, A.

D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, “Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen,” Phys. Rev. A 88(4), 041805 (2013).
[CrossRef]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[CrossRef]

Bernhardt, J.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[CrossRef]

Binhammer, T.

Brelet, Y.

Cameron, S.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Cheng, Y.

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

Chin, S. L.

T. Wang, J. Ju, J. F. Daigle, S. Yuan, R. Li, S. L. Chin, “Self-seeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air,” Laser Phys. Lett. 10(12), 125401 (2013).
[CrossRef]

S. Owada, A. Azarm, S. Hosseini, A. Iwasaki, S. L. Chin, K. Yamanouchi, “Amplified spontaneous C3Πu–B3Πg emission and rotational and vibrational state distributions in C3Πu state of N2 in femtosecond laser induced filament in air,” Chem. Phys. Lett. 581(21), 21–25 (2013).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[CrossRef]

Q. Luo, W. Liu, S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B 76(3), 337–340 (2003).
[CrossRef]

Chu, W.

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

Corkum, P.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Couairon, A.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filament: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[CrossRef]

E. Schulz, D. S. Steingrube, T. Binhammer, M. B. Gaarde, A. Couairon, U. Morgner, M. Kovačev, “Tracking spectral shapes and temporal dynamics along a femtosecond filament,” Opt. Express 19(20), 19495–19507 (2011).
[CrossRef] [PubMed]

Daigle, J. F.

T. Wang, J. Ju, J. F. Daigle, S. Yuan, R. Li, S. L. Chin, “Self-seeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air,” Laser Phys. Lett. 10(12), 125401 (2013).
[CrossRef]

Ding, P.

Dogariu, A.

A. Dogariu, J. B. Michael, M. O. Scully, R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Durand, M.

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filament: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[CrossRef]

Fernsler, R.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecule nitrogen,” J. Appl. Phys. 111(3), 033105 (2012).
[CrossRef]

Fons, J. T.

J. T. Fons, R. S. Schappe, C. C. Lin, “Electron-impact excitation of the second positive band system (C3Πu→ B3Πg) and the C3Πu electronic state of the nitrogen molecule,” Phys. Rev. A 53(4), 2239–2247 (1996).
[CrossRef] [PubMed]

Forestier, B.

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filament: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[CrossRef]

Gaarde, M. B.

Gorbal, M. R.

R. S. Kunabenchi, M. R. Gorbal, M. I. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9(4), 259–329 (1984).
[CrossRef]

Gordon, D.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecule nitrogen,” J. Appl. Phys. 111(3), 033105 (2012).
[CrossRef]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98(21), 211102 (2011).
[CrossRef]

Hafizi, B.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecule nitrogen,” J. Appl. Phys. 111(3), 033105 (2012).
[CrossRef]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98(21), 211102 (2011).
[CrossRef]

Hemmer, P. R.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Hosseini, S.

S. Owada, A. Azarm, S. Hosseini, A. Iwasaki, S. L. Chin, K. Yamanouchi, “Amplified spontaneous C3Πu–B3Πg emission and rotational and vibrational state distributions in C3Πu state of N2 in femtosecond laser induced filament in air,” Chem. Phys. Lett. 581(21), 21–25 (2013).
[CrossRef]

Houard, A.

G. Point, Y. Liu, Y. Brelet, S. Mitryukovskiy, P. Ding, A. Houard, A. Mysyrowicz, “Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser,” Opt. Lett. 39(7), 1725–1728 (2014).
[CrossRef] [PubMed]

Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, “Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses,” Opt. Express 21(19), 22791–22798 (2013).
[CrossRef] [PubMed]

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filament: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[CrossRef]

S. Mitryukovskiy, Y. Liu, A. Houard, A. Mysyrowicz, “A simple method to estimate the laser intensity in air filaments” (in preparation).

Iwasaki, A.

S. Owada, A. Azarm, S. Hosseini, A. Iwasaki, S. L. Chin, K. Yamanouchi, “Amplified spontaneous C3Πu–B3Πg emission and rotational and vibrational state distributions in C3Πu state of N2 in femtosecond laser induced filament in air,” Chem. Phys. Lett. 581(21), 21–25 (2013).
[CrossRef]

Jing, C.

J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

Ju, J.

T. Wang, J. Ju, J. F. Daigle, S. Yuan, R. Li, S. L. Chin, “Self-seeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air,” Laser Phys. Lett. 10(12), 125401 (2013).
[CrossRef]

Kamali, Y.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[CrossRef]

Kartashov, D.

D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, “Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen,” Phys. Rev. A 88(4), 041805 (2013).
[CrossRef]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[CrossRef]

Kocharovsky, V.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Kolesik, M.

M. Kolesik, J. V. Moloney, E. M. Wright, “Polarization dynamics of femtosecond pulses propagating in air,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64(4), 046607 (2001).
[CrossRef] [PubMed]

Kovacev, M.

Kunabenchi, R. S.

R. S. Kunabenchi, M. R. Gorbal, M. I. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9(4), 259–329 (1984).
[CrossRef]

Lehmann, K.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Li, G.

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

Li, H.

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

Li, R.

T. Wang, J. Ju, J. F. Daigle, S. Yuan, R. Li, S. L. Chin, “Self-seeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air,” Laser Phys. Lett. 10(12), 125401 (2013).
[CrossRef]

Lin, C. C.

J. T. Fons, R. S. Schappe, C. C. Lin, “Electron-impact excitation of the second positive band system (C3Πu→ B3Πg) and the C3Πu electronic state of the nitrogen molecule,” Phys. Rev. A 53(4), 2239–2247 (1996).
[CrossRef] [PubMed]

Liu, W.

Q. Luo, W. Liu, S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B 76(3), 337–340 (2003).
[CrossRef]

Liu, Y.

G. Point, Y. Liu, Y. Brelet, S. Mitryukovskiy, P. Ding, A. Houard, A. Mysyrowicz, “Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser,” Opt. Lett. 39(7), 1725–1728 (2014).
[CrossRef] [PubMed]

Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, “Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses,” Opt. Express 21(19), 22791–22798 (2013).
[CrossRef] [PubMed]

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filament: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[CrossRef]

S. Mitryukovskiy, Y. Liu, A. Houard, A. Mysyrowicz, “A simple method to estimate the laser intensity in air filaments” (in preparation).

Lucht, R.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Luo, Q.

Q. Luo, W. Liu, S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B 76(3), 337–340 (2003).
[CrossRef]

Michael, J. B.

A. Dogariu, J. B. Michael, M. O. Scully, R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Miles, R.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Miles, R. B.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Mitryukovskiy, S.

Moloney, J. V.

M. Kolesik, J. V. Moloney, E. M. Wright, “Polarization dynamics of femtosecond pulses propagating in air,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64(4), 046607 (2001).
[CrossRef] [PubMed]

Mora, P.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Morgner, U.

Mysyrowicz, A.

G. Point, Y. Liu, Y. Brelet, S. Mitryukovskiy, P. Ding, A. Houard, A. Mysyrowicz, “Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser,” Opt. Lett. 39(7), 1725–1728 (2014).
[CrossRef] [PubMed]

Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, “Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses,” Opt. Express 21(19), 22791–22798 (2013).
[CrossRef] [PubMed]

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filament: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[CrossRef]

S. Mitryukovskiy, Y. Liu, A. Houard, A. Mysyrowicz, “A simple method to estimate the laser intensity in air filaments” (in preparation).

Ni, J.

J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

Owada, S.

S. Owada, A. Azarm, S. Hosseini, A. Iwasaki, S. L. Chin, K. Yamanouchi, “Amplified spontaneous C3Πu–B3Πg emission and rotational and vibrational state distributions in C3Πu state of N2 in femtosecond laser induced filament in air,” Chem. Phys. Lett. 581(21), 21–25 (2013).
[CrossRef]

Peñano, J.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecule nitrogen,” J. Appl. Phys. 111(3), 033105 (2012).
[CrossRef]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98(21), 211102 (2011).
[CrossRef]

Point, G.

Polynkin, P.

D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, “Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen,” Phys. Rev. A 88(4), 041805 (2013).
[CrossRef]

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Prade, B.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Pugžlys, A.

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[CrossRef]

Qiao, L.

Roach, W.

D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, “Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen,” Phys. Rev. A 88(4), 041805 (2013).
[CrossRef]

Rostovtsev, Y.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Savadatti, M. I.

R. S. Kunabenchi, M. R. Gorbal, M. I. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9(4), 259–329 (1984).
[CrossRef]

Schappe, R. S.

J. T. Fons, R. S. Schappe, C. C. Lin, “Electron-impact excitation of the second positive band system (C3Πu→ B3Πg) and the C3Πu electronic state of the nitrogen molecule,” Phys. Rev. A 53(4), 2239–2247 (1996).
[CrossRef] [PubMed]

Schmitt-Sody, A.

D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, “Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen,” Phys. Rev. A 88(4), 041805 (2013).
[CrossRef]

Schulz, E.

Scully, M.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecule nitrogen,” J. Appl. Phys. 111(3), 033105 (2012).
[CrossRef]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98(21), 211102 (2011).
[CrossRef]

Scully, M. O.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Shneider, M.

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[CrossRef]

Siebert, T.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Smeenk, C.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Sokolov, A. V.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Sprangle, P.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecule nitrogen,” J. Appl. Phys. 111(3), 033105 (2012).
[CrossRef]

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98(21), 211102 (2011).
[CrossRef]

Steingrube, D. S.

Wang, T.

T. Wang, J. Ju, J. F. Daigle, S. Yuan, R. Li, S. L. Chin, “Self-seeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air,” Laser Phys. Lett. 10(12), 125401 (2013).
[CrossRef]

Warren, W.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Welch, G. R.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Wright, E. M.

M. Kolesik, J. V. Moloney, E. M. Wright, “Polarization dynamics of femtosecond pulses propagating in air,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64(4), 046607 (2001).
[CrossRef] [PubMed]

Xie, H.

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

Xu, H.

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

Xu, H. L.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[CrossRef]

Xu, Z.

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

Yamanouchi, K.

S. Owada, A. Azarm, S. Hosseini, A. Iwasaki, S. L. Chin, K. Yamanouchi, “Amplified spontaneous C3Πu–B3Πg emission and rotational and vibrational state distributions in C3Πu state of N2 in femtosecond laser induced filament in air,” Chem. Phys. Lett. 581(21), 21–25 (2013).
[CrossRef]

Yao, J.

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

Yuan, S.

T. Wang, J. Ju, J. F. Daigle, S. Yuan, R. Li, S. L. Chin, “Self-seeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air,” Laser Phys. Lett. 10(12), 125401 (2013).
[CrossRef]

Zeng, B.

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

Zhang, C.

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

Zhang, H.

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Opt. Lett. 39(8), 2250–2253 (2014).

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

Zheltikov, A.

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[CrossRef]

Zhou, B.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Appl. Phys. B (1)

Q. Luo, W. Liu, S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B 76(3), 337–340 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98(21), 211102 (2011).
[CrossRef]

Chem. Phys. (1)

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

S. Owada, A. Azarm, S. Hosseini, A. Iwasaki, S. L. Chin, K. Yamanouchi, “Amplified spontaneous C3Πu–B3Πg emission and rotational and vibrational state distributions in C3Πu state of N2 in femtosecond laser induced filament in air,” Chem. Phys. Lett. 581(21), 21–25 (2013).
[CrossRef]

J. Appl. Phys. (1)

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecule nitrogen,” J. Appl. Phys. 111(3), 033105 (2012).
[CrossRef]

Laser Phys. Lett. (2)

W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, “Self-induced white-light seeding laser in a femtosecond laser filament,” Laser Phys. Lett. 11(1), 015301 (2014).
[CrossRef]

T. Wang, J. Ju, J. F. Daigle, S. Yuan, R. Li, S. L. Chin, “Self-seeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air,” Laser Phys. Lett. 10(12), 125401 (2013).
[CrossRef]

New J. Phys. (1)

J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15(2), 023046 (2013).
[CrossRef]

Opt. Commun. (1)

Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filament: A revisit,” Opt. Commun. 284(19), 4706–4713 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (5)

J. T. Fons, R. S. Schappe, C. C. Lin, “Electron-impact excitation of the second positive band system (C3Πu→ B3Πg) and the C3Πu electronic state of the nitrogen molecule,” Phys. Rev. A 53(4), 2239–2247 (1996).
[CrossRef] [PubMed]

D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, “Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen,” Phys. Rev. A 88(4), 041805 (2013).
[CrossRef]

H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, “Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field,” Phys. Rev. A 88(6), 063417 (2013).
[CrossRef]

J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev. A 84(5), 051802 (2011).
[CrossRef]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[CrossRef]

Phys. Rev. E Stat. Nonlinear Soft Matter Phys. (1)

M. Kolesik, J. V. Moloney, E. M. Wright, “Polarization dynamics of femtosecond pulses propagating in air,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64(4), 046607 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106(25), 255002 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7806–7811 (2005).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

R. S. Kunabenchi, M. R. Gorbal, M. I. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9(4), 259–329 (1984).
[CrossRef]

Science (1)

A. Dogariu, J. B. Michael, M. O. Scully, R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Other (1)

S. Mitryukovskiy, Y. Liu, A. Houard, A. Mysyrowicz, “A simple method to estimate the laser intensity in air filaments” (in preparation).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic experimental setup. The incident femtosecond pulse is focused by an f = 1000 mm lens. The dichromatic beam splitter (BS) steers the 800 nm pulses inside the gas cell filled with nitrogen gas or its mixture with air. The backward radiation from the plasma is collected by a f = 100 mm fused silica lens into the slit of a monochromator. The signal is measured with a photomultiplier tube (PMT).

Fig. 2
Fig. 2

Spectra of (a) transverse fluorescence and (b) backward UV emission for circular and linear laser polarization. The incident laser pulse energy is 9.3 mJ.

Fig. 3
Fig. 3

(a) Backward 337 nm signal as a function of incident laser pulse energy. (b) Measured length and width of plasma as a function of pump laser energy. In both cases the pump laser is linearly polarized.

Fig. 4
Fig. 4

Backward 337 nm signal as a function of plasma length (black squares, lower scale) and plasma volume (red circles, upper scale). The curves are best fitted with an exponential or linear law respectively.

Fig. 5
Fig. 5

Measured backward signal at 337 nm as a function of incident laser pulse energy, for both circular and linear laser polarization.

Fig. 6
Fig. 6

Backward emission signal at 337 nm as a function of the rotation angle of the quarter-wave plate. The incident laser energy for (a), (b), (c) are 0.3 mJ, 0.6 mJ, and 9.3 mJ, respectively. Angle 0° corresponds to linearly polarized light.

Fig. 7
Fig. 7

Dependence of the backward 337 nm signal obtained from filaments in air as a function of the rotation angle of the quarter-wave plate. The incident laser energy is 9.3 mJ and the focal length is f = 1000 mm.

Fig. 8
Fig. 8

Measured backward 337 nm signal from filaments in a mixture of nitrogen and oxygen as a function of oxygen gas concentration, for both circular and linear polarized laser pulses. The incident pulse energy is 9.3 mJ.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N 2 + + N 2 = N 4 + , N 4 + +e= N 2 + ( C 3 Π u + )+ N 2 ( X 1 Σ g + ).
N 2 ( X 1 Σ g + )+e= N 2 ( C 3 Π u + )+e.
I= E t π ( d 2 ) 2 τ p =1.45× 10 14 W/c m 2 ,
N 2 ( C 3 Π u + )+ O 2 = N 2 ( X 1 Σ g + )+O+O,

Metrics