Abstract

This study focuses on determining the optimized thickness of an absorbing thin-film with embedded gold nanoantennas, for absorption enhancement. Gold paired-strips nanoantennas with small gaps have been proposed for light trapping because of the high localized electric field in the gap due to resonance. Paired-strips nanoantennas with small gaps produce higher effective absorption compared to single-strip gratings. From the average absorption two-dimensional map, the absorption enhancement may increase by a factor of up to 20 for gold paired-strips nanoantennas embedded in a 100 nm thick P3HT:PCBM thin-film.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Dutta Choudhury, R. Badugu, K. Ray, J. R. Lakowicz, “Steering fluorescence emission with metal-dielectric-metal Structures of Au, Ag, and Al,” J. Phys. Chem. C 117(30), 15798–15807 (2013).
    [CrossRef]
  2. P. K. Maharana, S. Bharadwaj, R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114(1), 014304 (2013).
    [CrossRef]
  3. E. Filippo, D. Manno, A. Buccolieri, M. Di Giulio, A. Serra, “Shape-dependent plasmon resonances of Ag nanostructures,” Superlattices Microstruct. 47(1), 66–71 (2010).
    [CrossRef]
  4. W. S. Hwang, P. L. Truong, S. J. Sim, “Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition,” Anal. Biochem. 421(1), 213–218 (2012).
    [CrossRef] [PubMed]
  5. B. C. Galarreta, I. Rupar, A. Young, F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115(31), 15318–15323 (2011).
    [CrossRef]
  6. M. D. Grogan, S. Heck, L. Xiao, R. England, S. Maier, T. A. Birks, “Control of nanoparticle aggregation in aerogel hosts,” J. Non-Cryst. Solids 358(2), 241–245 (2012).
    [CrossRef]
  7. N. N. Nedyalkov, S. E. Imamova, P. A. Atanasov, M. Obara, “Near field localization mediated by a single gold nanoparticle embedded in transparent matrix: application for surface modification,” Appl. Surf. Sci. 255(10), 5125–5129 (2009).
    [CrossRef]
  8. R. B. Dunbar, T. Pfadler, L. Schmidt-Mende, “Highly absorbing solar cells−a survey of plasmonic nanostructures,” Opt. Express 20(S2Suppl 2), A177–A189 (2012).
    [CrossRef] [PubMed]
  9. W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
    [CrossRef]
  10. L. Pan, D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3(4), 189–190 (2009).
    [CrossRef]
  11. P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
    [CrossRef] [PubMed]
  12. K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  13. L.-Y. Yue, P. Wang, Y.-X. Huang, “Easy method to determine refractive indices of microspheres and in micro-regions of inhomogeneous media,” Biosens. Bioelectron. 30(1), 216–222 (2011).
    [CrossRef] [PubMed]
  14. M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
    [CrossRef]
  15. N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
    [CrossRef] [PubMed]
  16. M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
    [CrossRef] [PubMed]
  17. J. M. McMahon, S. Li, L. K. Ausman, G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
    [CrossRef]
  18. D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
    [CrossRef]
  19. V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping for thin film A-SI: H solar cells,” in Proceedings of Photovoltaic Specialists Conference (PVSC), (IEEE, 2010), pp. 000760–000765.
    [CrossRef]
  20. C. Mu, J.-P. Zhang, D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
    [CrossRef] [PubMed]
  21. K. Q. Costa, V. Dmitriev, “Comparative analysis of circular and triangular gold nanodisks for field enhancement applications,” J. Micro. Optoelectron. Electromagn. Appl. 9(2), 123–130 (2010).
    [CrossRef]
  22. T. L. dos Santos, K. Q. da Costa, and V. Dmitriev, “Comparative Near Field Analysis of Gold Nanodisks of Different Shapes,” in Latin America Optics and Photonics Conference(Optical Society of America, 2010).
    [CrossRef]
  23. H.-W. Cheng and Y. Li, “Simulation of Raman enhancement in SERS-active substrates with Au layer considering different geometry of nanoparticles,” in Proceedings of Computational Electronics (IWCE), (IEEE, 2010), pp. 1–4.
  24. G. Bi, W. Xiong, L. Wang, K. Ueno, H. Misawa, J.- Qiu, “Fabrication of periodical structure and shape-induced modulating spectroscopy of Au nanoparticles,” Opt. Commun. 285(9), 2472–2477 (2012).
    [CrossRef]
  25. R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
    [CrossRef]
  26. V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
    [CrossRef] [PubMed]
  27. R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [CrossRef]
  28. W. Wang, S. Wu, K. Reinhardt, Y. Lu, S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
    [CrossRef] [PubMed]
  29. P. B. Johnson, R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  30. X. Ni, Z. Liu, A. V. Kildishev, “PhotonicsDB: Optical Constants,” (2010), https://nanohub.org/resources/PhotonicsDB .
  31. S.-J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H.-C. Kan, R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18(S4Suppl 4), A528–A535 (2010).
    [CrossRef] [PubMed]
  32. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  33. F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
    [CrossRef]
  34. V. Gusak, B. Kasemo, C. Hägglund, “Thickness dependence of plasmonic charge carrier generation in ultrathin a-Si:H layers for solar cells,” ACS Nano 5(8), 6218–6225 (2011).
    [CrossRef] [PubMed]
  35. B. Johansen, C. Uhrenfeldt, A. N. Larsen, “Plasmonic properties of β-Sn Nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 1–6 (2013).
  36. J. Toudert, R. Serna, M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
    [CrossRef]
  37. O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
    [CrossRef]
  38. C. Perera, K. Vernon, “Simulation of the gap plasmon coupling with a quantum dot,” Proc. SPIE 8923, 89230Z (2013).
    [CrossRef]
  39. K. Q. Le, A. Abass, B. Maes, P. Bienstman, A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
    [CrossRef] [PubMed]
  40. D. Qu, F. Liu, Y. Huang, W. Xie, Q. Xu, “Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles,” Opt. Express 19(24), 24795–24803 (2011).
    [CrossRef] [PubMed]
  41. W. Ren, G. Zhang, Y. Wu, H. Ding, Q. Shen, K. Zhang, J. Li, N. Pan, X. Wang, “Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell,” Opt. Express 19(27), 26536–26550 (2011).
    [CrossRef] [PubMed]
  42. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
    [CrossRef]
  43. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express 19(12), 11256–11263 (2011).
    [CrossRef] [PubMed]
  44. M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express 19(21), 20642–20649 (2011).
    [CrossRef] [PubMed]
  45. Z. Chen, L. Wang, C. Wang, Y. Zhu, “Polarization-insensitive surface plasmon resonance sensor by cross-slit metallic periodic arrays,” Optik (Stuttg.) 124(24), 6743–6745 (2013).
    [CrossRef]
  46. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
    [CrossRef] [PubMed]
  47. S. Y. Chou, W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1), A60–A76 (2013).
    [CrossRef] [PubMed]
  48. Y. Nishijima, L. Rosa, S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20(10), 11466–11477 (2012).
    [CrossRef] [PubMed]

2013 (8)

R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[CrossRef]

S. Dutta Choudhury, R. Badugu, K. Ray, J. R. Lakowicz, “Steering fluorescence emission with metal-dielectric-metal Structures of Au, Ag, and Al,” J. Phys. Chem. C 117(30), 15798–15807 (2013).
[CrossRef]

P. K. Maharana, S. Bharadwaj, R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114(1), 014304 (2013).
[CrossRef]

F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
[CrossRef]

B. Johansen, C. Uhrenfeldt, A. N. Larsen, “Plasmonic properties of β-Sn Nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 1–6 (2013).

C. Perera, K. Vernon, “Simulation of the gap plasmon coupling with a quantum dot,” Proc. SPIE 8923, 89230Z (2013).
[CrossRef]

Z. Chen, L. Wang, C. Wang, Y. Zhu, “Polarization-insensitive surface plasmon resonance sensor by cross-slit metallic periodic arrays,” Optik (Stuttg.) 124(24), 6743–6745 (2013).
[CrossRef]

S. Y. Chou, W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1), A60–A76 (2013).
[CrossRef] [PubMed]

2012 (12)

K. Q. Le, A. Abass, B. Maes, P. Bienstman, A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

R. B. Dunbar, T. Pfadler, L. Schmidt-Mende, “Highly absorbing solar cells−a survey of plasmonic nanostructures,” Opt. Express 20(S2Suppl 2), A177–A189 (2012).
[CrossRef] [PubMed]

Y. Nishijima, L. Rosa, S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20(10), 11466–11477 (2012).
[CrossRef] [PubMed]

J. Toudert, R. Serna, M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[CrossRef]

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[CrossRef]

M. D. Grogan, S. Heck, L. Xiao, R. England, S. Maier, T. A. Birks, “Control of nanoparticle aggregation in aerogel hosts,” J. Non-Cryst. Solids 358(2), 241–245 (2012).
[CrossRef]

W. S. Hwang, P. L. Truong, S. J. Sim, “Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition,” Anal. Biochem. 421(1), 213–218 (2012).
[CrossRef] [PubMed]

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[CrossRef]

G. Bi, W. Xiong, L. Wang, K. Ueno, H. Misawa, J.- Qiu, “Fabrication of periodical structure and shape-induced modulating spectroscopy of Au nanoparticles,” Opt. Commun. 285(9), 2472–2477 (2012).
[CrossRef]

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[CrossRef] [PubMed]

J. M. McMahon, S. Li, L. K. Ausman, G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[CrossRef]

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

2011 (8)

L.-Y. Yue, P. Wang, Y.-X. Huang, “Easy method to determine refractive indices of microspheres and in micro-regions of inhomogeneous media,” Biosens. Bioelectron. 30(1), 216–222 (2011).
[CrossRef] [PubMed]

B. C. Galarreta, I. Rupar, A. Young, F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115(31), 15318–15323 (2011).
[CrossRef]

V. Gusak, B. Kasemo, C. Hägglund, “Thickness dependence of plasmonic charge carrier generation in ultrathin a-Si:H layers for solar cells,” ACS Nano 5(8), 6218–6225 (2011).
[CrossRef] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express 19(12), 11256–11263 (2011).
[CrossRef] [PubMed]

M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express 19(21), 20642–20649 (2011).
[CrossRef] [PubMed]

D. Qu, F. Liu, Y. Huang, W. Xie, Q. Xu, “Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles,” Opt. Express 19(24), 24795–24803 (2011).
[CrossRef] [PubMed]

W. Ren, G. Zhang, Y. Wu, H. Ding, Q. Shen, K. Zhang, J. Li, N. Pan, X. Wang, “Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell,” Opt. Express 19(27), 26536–26550 (2011).
[CrossRef] [PubMed]

2010 (8)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

S.-J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H.-C. Kan, R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18(S4Suppl 4), A528–A535 (2010).
[CrossRef] [PubMed]

E. Filippo, D. Manno, A. Buccolieri, M. Di Giulio, A. Serra, “Shape-dependent plasmon resonances of Ag nanostructures,” Superlattices Microstruct. 47(1), 66–71 (2010).
[CrossRef]

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

C. Mu, J.-P. Zhang, D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
[CrossRef] [PubMed]

K. Q. Costa, V. Dmitriev, “Comparative analysis of circular and triangular gold nanodisks for field enhancement applications,” J. Micro. Optoelectron. Electromagn. Appl. 9(2), 123–130 (2010).
[CrossRef]

2009 (4)

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

L. Pan, D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3(4), 189–190 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

N. N. Nedyalkov, S. E. Imamova, P. A. Atanasov, M. Obara, “Near field localization mediated by a single gold nanoparticle embedded in transparent matrix: application for surface modification,” Appl. Surf. Sci. 255(10), 5125–5129 (2009).
[CrossRef]

2008 (1)

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

2007 (2)

K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

1972 (1)

P. B. Johnson, R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Abass, A.

Aguilar, Z. P.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[CrossRef] [PubMed]

Alexeenko, A. A.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[CrossRef]

Alù, A.

Atanasov, P. A.

N. N. Nedyalkov, S. E. Imamova, P. A. Atanasov, M. Obara, “Near field localization mediated by a single gold nanoparticle embedded in transparent matrix: application for surface modification,” Appl. Surf. Sci. 255(10), 5125–5129 (2009).
[CrossRef]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping for thin film A-SI: H solar cells,” in Proceedings of Photovoltaic Specialists Conference (PVSC), (IEEE, 2010), pp. 000760–000765.
[CrossRef]

Ausman, L. K.

J. M. McMahon, S. Li, L. K. Ausman, G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[CrossRef]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Badugu, R.

S. Dutta Choudhury, R. Badugu, K. Ray, J. R. Lakowicz, “Steering fluorescence emission with metal-dielectric-metal Structures of Au, Ag, and Al,” J. Phys. Chem. C 117(30), 15798–15807 (2013).
[CrossRef]

Bailly, S.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Ballarotto, M.

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Bartlett, P. N.

Baumberg, J. J.

Bharadwaj, S.

P. K. Maharana, S. Bharadwaj, R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114(1), 014304 (2013).
[CrossRef]

Bi, G.

G. Bi, W. Xiong, L. Wang, K. Ueno, H. Misawa, J.- Qiu, “Fabrication of periodical structure and shape-induced modulating spectroscopy of Au nanoparticles,” Opt. Commun. 285(9), 2472–2477 (2012).
[CrossRef]

Bienstman, P.

Birks, T. A.

M. D. Grogan, S. Heck, L. Xiao, R. England, S. Maier, T. A. Birks, “Control of nanoparticle aggregation in aerogel hosts,” J. Non-Cryst. Solids 358(2), 241–245 (2012).
[CrossRef]

Bogy, D. B.

L. Pan, D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3(4), 189–190 (2009).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Buccolieri, A.

E. Filippo, D. Manno, A. Buccolieri, M. Di Giulio, A. Serra, “Shape-dependent plasmon resonances of Ag nanostructures,” Superlattices Microstruct. 47(1), 66–71 (2010).
[CrossRef]

Challener, W.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Chen, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Chen, Z.

Z. Chen, L. Wang, C. Wang, Y. Zhu, “Polarization-insensitive surface plasmon resonance sensor by cross-slit metallic periodic arrays,” Optik (Stuttg.) 124(24), 6743–6745 (2013).
[CrossRef]

Chou, S. Y.

Christy, R.-W.

P. B. Johnson, R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Connolly, J.

F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
[CrossRef]

Cortés-Juan, F.

F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
[CrossRef]

Costa, K. Q.

K. Q. Costa, V. Dmitriev, “Comparative analysis of circular and triangular gold nanodisks for field enhancement applications,” J. Micro. Optoelectron. Electromagn. Appl. 9(2), 123–130 (2010).
[CrossRef]

Cushing, S. K.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[CrossRef] [PubMed]

David, C.

F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
[CrossRef]

de Abajo, F. G.

F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
[CrossRef]

de Bettignies, R.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Defranoux, C.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Di Giulio, M.

E. Filippo, D. Manno, A. Buccolieri, M. Di Giulio, A. Serra, “Shape-dependent plasmon resonances of Ag nanostructures,” Superlattices Microstruct. 47(1), 66–71 (2010).
[CrossRef]

Ding, H.

Ding, W.

Dmitriev, V.

K. Q. Costa, V. Dmitriev, “Comparative analysis of circular and triangular gold nanodisks for field enhancement applications,” J. Micro. Optoelectron. Electromagn. Appl. 9(2), 123–130 (2010).
[CrossRef]

Dmitruk, I. M.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[CrossRef]

Dunbar, R. B.

Dutta Choudhury, S.

S. Dutta Choudhury, R. Badugu, K. Ray, J. R. Lakowicz, “Steering fluorescence emission with metal-dielectric-metal Structures of Au, Ag, and Al,” J. Phys. Chem. C 117(30), 15798–15807 (2013).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

England, R.

M. D. Grogan, S. Heck, L. Xiao, R. England, S. Maier, T. A. Birks, “Control of nanoparticle aggregation in aerogel hosts,” J. Non-Cryst. Solids 358(2), 241–245 (2012).
[CrossRef]

Eres, G.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Escoubas, L.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Fan, R.-H.

R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[CrossRef]

Feng, Q.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping for thin film A-SI: H solar cells,” in Proceedings of Photovoltaic Specialists Conference (PVSC), (IEEE, 2010), pp. 000760–000765.
[CrossRef]

Filippo, E.

E. Filippo, D. Manno, A. Buccolieri, M. Di Giulio, A. Serra, “Shape-dependent plasmon resonances of Ag nanostructures,” Superlattices Microstruct. 47(1), 66–71 (2010).
[CrossRef]

Flory, F.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Gaddis, A. L.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Gage, E. C.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Galarreta, B. C.

B. C. Galarreta, I. Rupar, A. Young, F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115(31), 15318–15323 (2011).
[CrossRef]

Gokemeijer, N.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

Green, M. A.

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[CrossRef]

Greenham, N. C.

Grogan, M. D.

M. D. Grogan, S. Heck, L. Xiao, R. England, S. Maier, T. A. Birks, “Control of nanoparticle aggregation in aerogel hosts,” J. Non-Cryst. Solids 358(2), 241–245 (2012).
[CrossRef]

Gu, B.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Guillerez, S.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Gusak, V.

V. Gusak, B. Kasemo, C. Hägglund, “Thickness dependence of plasmonic charge carrier generation in ultrathin a-Si:H layers for solar cells,” ACS Nano 5(8), 6218–6225 (2011).
[CrossRef] [PubMed]

Hägglund, C.

V. Gusak, B. Kasemo, C. Hägglund, “Thickness dependence of plasmonic charge carrier generation in ultrathin a-Si:H layers for solar cells,” ACS Nano 5(8), 6218–6225 (2011).
[CrossRef] [PubMed]

Hatab, N. A.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Heck, S.

M. D. Grogan, S. Heck, L. Xiao, R. England, S. Maier, T. A. Birks, “Control of nanoparticle aggregation in aerogel hosts,” J. Non-Cryst. Solids 358(2), 241–245 (2012).
[CrossRef]

Herman, W. N.

Hsia, Y.-T.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Hsueh, C.-H.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Hu, C.

Hu, Q.

R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[CrossRef]

Huang, C.

Huang, F.

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

Huang, X.-R.

R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[CrossRef]

Huang, Y.

Huang, Y.-X.

L.-Y. Yue, P. Wang, Y.-X. Huang, “Easy method to determine refractive indices of microspheres and in micro-regions of inhomogeneous media,” Biosens. Bioelectron. 30(1), 216–222 (2011).
[CrossRef] [PubMed]

Hurtado, J.

F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
[CrossRef]

Hwang, W. S.

W. S. Hwang, P. L. Truong, S. J. Sim, “Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition,” Anal. Biochem. 421(1), 213–218 (2012).
[CrossRef] [PubMed]

Imamova, S. E.

N. N. Nedyalkov, S. E. Imamova, P. A. Atanasov, M. Obara, “Near field localization mediated by a single gold nanoparticle embedded in transparent matrix: application for surface modification,” Appl. Surf. Sci. 255(10), 5125–5129 (2009).
[CrossRef]

Itagi, A.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

Jha, R.

P. K. Maharana, S. Bharadwaj, R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114(1), 014304 (2013).
[CrossRef]

Jiménez de Castro, M.

J. Toudert, R. Serna, M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[CrossRef]

Johansen, B.

B. Johansen, C. Uhrenfeldt, A. N. Larsen, “Plasmonic properties of β-Sn Nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 1–6 (2013).

Johnson, P. B.

P. B. Johnson, R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Ju, G.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Juodkazis, S.

Kan, H.-C.

Karns, D.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Kasemo, B.

V. Gusak, B. Kasemo, C. Hägglund, “Thickness dependence of plasmonic charge carrier generation in ultrathin a-Si:H layers for solar cells,” ACS Nano 5(8), 6218–6225 (2011).
[CrossRef] [PubMed]

Kotko, A. V.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[CrossRef]

Lagugné-Labarthet, F.

B. C. Galarreta, I. Rupar, A. Young, F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115(31), 15318–15323 (2011).
[CrossRef]

Lakowicz, J. R.

S. Dutta Choudhury, R. Badugu, K. Ray, J. R. Lakowicz, “Steering fluorescence emission with metal-dielectric-metal Structures of Au, Ag, and Al,” J. Phys. Chem. C 117(30), 15798–15807 (2013).
[CrossRef]

Lal, N. N.

Lankford, J.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[CrossRef] [PubMed]

Larsen, A. N.

B. Johansen, C. Uhrenfeldt, A. N. Larsen, “Plasmonic properties of β-Sn Nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 1–6 (2013).

Le, K. Q.

Li, H. B.

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping for thin film A-SI: H solar cells,” in Proceedings of Photovoltaic Specialists Conference (PVSC), (IEEE, 2010), pp. 000760–000765.
[CrossRef]

Li, J.

Li, J.-H.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Li, M.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[CrossRef] [PubMed]

Li, S.

J. M. McMahon, S. Li, L. K. Ausman, G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[CrossRef]

Liu, F.

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Lu, Y.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Luo, X.

Ma, D.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[CrossRef] [PubMed]

Maes, B.

Mahajan, S.

Maharana, P. K.

P. K. Maharana, S. Bharadwaj, R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114(1), 014304 (2013).
[CrossRef]

Maier, S.

M. D. Grogan, S. Heck, L. Xiao, R. England, S. Maier, T. A. Birks, “Control of nanoparticle aggregation in aerogel hosts,” J. Non-Cryst. Solids 358(2), 241–245 (2012).
[CrossRef]

Manno, D.

E. Filippo, D. Manno, A. Buccolieri, M. Di Giulio, A. Serra, “Shape-dependent plasmon resonances of Ag nanostructures,” Superlattices Microstruct. 47(1), 66–71 (2010).
[CrossRef]

McMahon, J. M.

J. M. McMahon, S. Li, L. K. Ausman, G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[CrossRef]

Mihailetchi, V.

F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
[CrossRef]

Misawa, H.

G. Bi, W. Xiong, L. Wang, K. Ueno, H. Misawa, J.- Qiu, “Fabrication of periodical structure and shape-induced modulating spectroscopy of Au nanoparticles,” Opt. Commun. 285(9), 2472–2477 (2012).
[CrossRef]

Monestier, F.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Mu, C.

C. Mu, J.-P. Zhang, D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
[CrossRef] [PubMed]

Munday, J. N.

V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Nedyalkov, N. N.

N. N. Nedyalkov, S. E. Imamova, P. A. Atanasov, M. Obara, “Near field localization mediated by a single gold nanoparticle embedded in transparent matrix: application for surface modification,” Appl. Surf. Sci. 255(10), 5125–5129 (2009).
[CrossRef]

Nishijima, Y.

Obara, M.

N. N. Nedyalkov, S. E. Imamova, P. A. Atanasov, M. Obara, “Near field localization mediated by a single gold nanoparticle embedded in transparent matrix: application for surface modification,” Appl. Surf. Sci. 255(10), 5125–5129 (2009).
[CrossRef]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Pan, L.

L. Pan, D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3(4), 189–190 (2009).
[CrossRef]

Pan, N.

Peng, C.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Peng, R.-W.

R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[CrossRef]

Peng, W.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Peng, Y.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Perera, C.

C. Perera, K. Vernon, “Simulation of the gap plasmon coupling with a quantum dot,” Proc. SPIE 8923, 89230Z (2013).
[CrossRef]

Pfadler, T.

Phaneuf, R. J.

Pillai, S.

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[CrossRef]

Pinchuk, A. O.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[CrossRef]

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping for thin film A-SI: H solar cells,” in Proceedings of Photovoltaic Specialists Conference (PVSC), (IEEE, 2010), pp. 000760–000765.
[CrossRef]

Ponce-Alcántara, S.

F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
[CrossRef]

Pors, A.

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

Pu, M.

Qi, D.-X.

R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[CrossRef]

Qiu, J.-

G. Bi, W. Xiong, L. Wang, K. Ueno, H. Misawa, J.- Qiu, “Fabrication of periodical structure and shape-induced modulating spectroscopy of Au nanoparticles,” Opt. Commun. 285(9), 2472–2477 (2012).
[CrossRef]

Qu, D.

Ramos, C. C.

F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
[CrossRef]

Ray, K.

S. Dutta Choudhury, R. Badugu, K. Ray, J. R. Lakowicz, “Steering fluorescence emission with metal-dielectric-metal Structures of Au, Ag, and Al,” J. Phys. Chem. C 117(30), 15798–15807 (2013).
[CrossRef]

Reinhardt, K.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Ren, W.

Ren, X.-P.

R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[CrossRef]

Retterer, S. T.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Romero, D. B.

Rosa, L.

Rottmayer, R. E.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Rupar, I.

B. C. Galarreta, I. Rupar, A. Young, F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115(31), 15318–15323 (2011).
[CrossRef]

Sánchez, G.

F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
[CrossRef]

Schatz, G. C.

J. M. McMahon, S. Li, L. K. Ausman, G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[CrossRef]

Schmidt-Mende, L.

Schropp, R. E.

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping for thin film A-SI: H solar cells,” in Proceedings of Photovoltaic Specialists Conference (PVSC), (IEEE, 2010), pp. 000760–000765.
[CrossRef]

Seigler, M. A.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Serna, R.

J. Toudert, R. Serna, M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[CrossRef]

Serra, A.

E. Filippo, D. Manno, A. Buccolieri, M. Di Giulio, A. Serra, “Shape-dependent plasmon resonances of Ag nanostructures,” Superlattices Microstruct. 47(1), 66–71 (2010).
[CrossRef]

Shen, Q.

Sim, S. J.

W. S. Hwang, P. L. Truong, S. J. Sim, “Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition,” Anal. Biochem. 421(1), 213–218 (2012).
[CrossRef] [PubMed]

Simon, J.-J.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Sinha, J. K.

Soares, B. F.

Torchio, P.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Toudert, J.

J. Toudert, R. Serna, M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[CrossRef]

Truong, P. L.

W. S. Hwang, P. L. Truong, S. J. Sim, “Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition,” Anal. Biochem. 421(1), 213–218 (2012).
[CrossRef] [PubMed]

Tsai, S.-J.

Ueno, K.

G. Bi, W. Xiong, L. Wang, K. Ueno, H. Misawa, J.- Qiu, “Fabrication of periodical structure and shape-induced modulating spectroscopy of Au nanoparticles,” Opt. Commun. 285(9), 2472–2477 (2012).
[CrossRef]

Uhrenfeldt, C.

B. Johansen, C. Uhrenfeldt, A. N. Larsen, “Plasmonic properties of β-Sn Nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 1–6 (2013).

Van Duyne, R. P.

K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Verdal, J.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[CrossRef]

Verhagen, E.

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping for thin film A-SI: H solar cells,” in Proceedings of Photovoltaic Specialists Conference (PVSC), (IEEE, 2010), pp. 000760–000765.
[CrossRef]

Vernon, K.

C. Perera, K. Vernon, “Simulation of the gap plasmon coupling with a quantum dot,” Proc. SPIE 8923, 89230Z (2013).
[CrossRef]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping for thin film A-SI: H solar cells,” in Proceedings of Photovoltaic Specialists Conference (PVSC), (IEEE, 2010), pp. 000760–000765.
[CrossRef]

Walters, R. J.

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping for thin film A-SI: H solar cells,” in Proceedings of Photovoltaic Specialists Conference (PVSC), (IEEE, 2010), pp. 000760–000765.
[CrossRef]

Wang, C.

Z. Chen, L. Wang, C. Wang, Y. Zhu, “Polarization-insensitive surface plasmon resonance sensor by cross-slit metallic periodic arrays,” Optik (Stuttg.) 124(24), 6743–6745 (2013).
[CrossRef]

Wang, L.

Z. Chen, L. Wang, C. Wang, Y. Zhu, “Polarization-insensitive surface plasmon resonance sensor by cross-slit metallic periodic arrays,” Optik (Stuttg.) 124(24), 6743–6745 (2013).
[CrossRef]

G. Bi, W. Xiong, L. Wang, K. Ueno, H. Misawa, J.- Qiu, “Fabrication of periodical structure and shape-induced modulating spectroscopy of Au nanoparticles,” Opt. Commun. 285(9), 2472–2477 (2012).
[CrossRef]

Wang, M.

R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[CrossRef]

M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express 19(21), 20642–20649 (2011).
[CrossRef] [PubMed]

Wang, P.

L.-Y. Yue, P. Wang, Y.-X. Huang, “Easy method to determine refractive indices of microspheres and in micro-regions of inhomogeneous media,” Biosens. Bioelectron. 30(1), 216–222 (2011).
[CrossRef] [PubMed]

Wang, W.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Wang, X.

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Willatzen, M.

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

Willets, K. A.

K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Wu, N.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[CrossRef] [PubMed]

Wu, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Wu, Y.

Xiao, L.

M. D. Grogan, S. Heck, L. Xiao, R. England, S. Maier, T. A. Birks, “Control of nanoparticle aggregation in aerogel hosts,” J. Non-Cryst. Solids 358(2), 241–245 (2012).
[CrossRef]

Xie, W.

Xiong, W.

G. Bi, W. Xiong, L. Wang, K. Ueno, H. Misawa, J.- Qiu, “Fabrication of periodical structure and shape-induced modulating spectroscopy of Au nanoparticles,” Opt. Commun. 285(9), 2472–2477 (2012).
[CrossRef]

Xu, D.

C. Mu, J.-P. Zhang, D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
[CrossRef] [PubMed]

Xu, Q.

Yang, X.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Yeshchenko, O. A.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[CrossRef]

Young, A.

B. C. Galarreta, I. Rupar, A. Young, F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115(31), 15318–15323 (2011).
[CrossRef]

Yue, L.-Y.

L.-Y. Yue, P. Wang, Y.-X. Huang, “Easy method to determine refractive indices of microspheres and in micro-regions of inhomogeneous media,” Biosens. Bioelectron. 30(1), 216–222 (2011).
[CrossRef] [PubMed]

Zhang, G.

Zhang, J.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[CrossRef] [PubMed]

Zhang, J.-P.

C. Mu, J.-P. Zhang, D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
[CrossRef] [PubMed]

Zhang, K.

Zhang, Z.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Zhao, Z.

Zhu, L.-H.

R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[CrossRef]

Zhu, X.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Zhu, Y.

Z. Chen, L. Wang, C. Wang, Y. Zhu, “Polarization-insensitive surface plasmon resonance sensor by cross-slit metallic periodic arrays,” Optik (Stuttg.) 124(24), 6743–6745 (2013).
[CrossRef]

Acc. Chem. Res. (1)

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

V. Gusak, B. Kasemo, C. Hägglund, “Thickness dependence of plasmonic charge carrier generation in ultrathin a-Si:H layers for solar cells,” ACS Nano 5(8), 6218–6225 (2011).
[CrossRef] [PubMed]

Adv. Mater. (2)

V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Anal. Biochem. (1)

W. S. Hwang, P. L. Truong, S. J. Sim, “Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition,” Anal. Biochem. 421(1), 213–218 (2012).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Surf. Sci. (1)

N. N. Nedyalkov, S. E. Imamova, P. A. Atanasov, M. Obara, “Near field localization mediated by a single gold nanoparticle embedded in transparent matrix: application for surface modification,” Appl. Surf. Sci. 255(10), 5125–5129 (2009).
[CrossRef]

Biosens. Bioelectron. (1)

L.-Y. Yue, P. Wang, Y.-X. Huang, “Easy method to determine refractive indices of microspheres and in micro-regions of inhomogeneous media,” Biosens. Bioelectron. 30(1), 216–222 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

P. K. Maharana, S. Bharadwaj, R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114(1), 014304 (2013).
[CrossRef]

J. Micro. Optoelectron. Electromagn. Appl. (1)

K. Q. Costa, V. Dmitriev, “Comparative analysis of circular and triangular gold nanodisks for field enhancement applications,” J. Micro. Optoelectron. Electromagn. Appl. 9(2), 123–130 (2010).
[CrossRef]

J. Non-Cryst. Solids (1)

M. D. Grogan, S. Heck, L. Xiao, R. England, S. Maier, T. A. Birks, “Control of nanoparticle aggregation in aerogel hosts,” J. Non-Cryst. Solids 358(2), 241–245 (2012).
[CrossRef]

J. Phys. Chem. C (4)

S. Dutta Choudhury, R. Badugu, K. Ray, J. R. Lakowicz, “Steering fluorescence emission with metal-dielectric-metal Structures of Au, Ag, and Al,” J. Phys. Chem. C 117(30), 15798–15807 (2013).
[CrossRef]

B. C. Galarreta, I. Rupar, A. Young, F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115(31), 15318–15323 (2011).
[CrossRef]

J. M. McMahon, S. Li, L. K. Ausman, G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[CrossRef]

J. Toudert, R. Serna, M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[CrossRef]

J. Renewable Sustainable Energy (1)

F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013).
[CrossRef]

Nano Lett. (2)

W. Wang, S. Wu, K. Reinhardt, Y. Lu, S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Nanotechnology (2)

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[CrossRef] [PubMed]

C. Mu, J.-P. Zhang, D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010).
[CrossRef] [PubMed]

Nat Commun (1)

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics (3)

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

L. Pan, D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3(4), 189–190 (2009).
[CrossRef]

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[CrossRef]

Opt. Commun. (1)

G. Bi, W. Xiong, L. Wang, K. Ueno, H. Misawa, J.- Qiu, “Fabrication of periodical structure and shape-induced modulating spectroscopy of Au nanoparticles,” Opt. Commun. 285(9), 2472–2477 (2012).
[CrossRef]

Opt. Express (9)

S.-J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H.-C. Kan, R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18(S4Suppl 4), A528–A535 (2010).
[CrossRef] [PubMed]

R. B. Dunbar, T. Pfadler, L. Schmidt-Mende, “Highly absorbing solar cells−a survey of plasmonic nanostructures,” Opt. Express 20(S2Suppl 2), A177–A189 (2012).
[CrossRef] [PubMed]

S. Y. Chou, W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1), A60–A76 (2013).
[CrossRef] [PubMed]

Y. Nishijima, L. Rosa, S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20(10), 11466–11477 (2012).
[CrossRef] [PubMed]

N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express 19(12), 11256–11263 (2011).
[CrossRef] [PubMed]

M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express 19(21), 20642–20649 (2011).
[CrossRef] [PubMed]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[CrossRef] [PubMed]

D. Qu, F. Liu, Y. Huang, W. Xie, Q. Xu, “Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles,” Opt. Express 19(24), 24795–24803 (2011).
[CrossRef] [PubMed]

W. Ren, G. Zhang, Y. Wu, H. Ding, Q. Shen, K. Zhang, J. Li, N. Pan, X. Wang, “Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell,” Opt. Express 19(27), 26536–26550 (2011).
[CrossRef] [PubMed]

Optik (Stuttg.) (1)

Z. Chen, L. Wang, C. Wang, Y. Zhu, “Polarization-insensitive surface plasmon resonance sensor by cross-slit metallic periodic arrays,” Optik (Stuttg.) 124(24), 6743–6745 (2013).
[CrossRef]

Phys. Rev. B (3)

R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[CrossRef]

P. B. Johnson, R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012).
[CrossRef]

Plasmonics (2)

B. Johansen, C. Uhrenfeldt, A. N. Larsen, “Plasmonic properties of β-Sn Nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 1–6 (2013).

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[CrossRef]

Proc. SPIE (1)

C. Perera, K. Vernon, “Simulation of the gap plasmon coupling with a quantum dot,” Proc. SPIE 8923, 89230Z (2013).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Superlattices Microstruct. (1)

E. Filippo, D. Manno, A. Buccolieri, M. Di Giulio, A. Serra, “Shape-dependent plasmon resonances of Ag nanostructures,” Superlattices Microstruct. 47(1), 66–71 (2010).
[CrossRef]

Other (4)

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping for thin film A-SI: H solar cells,” in Proceedings of Photovoltaic Specialists Conference (PVSC), (IEEE, 2010), pp. 000760–000765.
[CrossRef]

T. L. dos Santos, K. Q. da Costa, and V. Dmitriev, “Comparative Near Field Analysis of Gold Nanodisks of Different Shapes,” in Latin America Optics and Photonics Conference(Optical Society of America, 2010).
[CrossRef]

H.-W. Cheng and Y. Li, “Simulation of Raman enhancement in SERS-active substrates with Au layer considering different geometry of nanoparticles,” in Proceedings of Computational Electronics (IWCE), (IEEE, 2010), pp. 1–4.

X. Ni, Z. Liu, A. V. Kildishev, “PhotonicsDB: Optical Constants,” (2010), https://nanohub.org/resources/PhotonicsDB .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Different types of nanostructures: Fig. 1(a), paired-strips nanoantennas; Fig. 1(b), single-strip gratings; and Fig. 1(c), scanning electron microscope image of paired-strips nanoantennas.

Fig. 2
Fig. 2

Normalized average electric field (color scale) versus wavelength (vertical axis), at different integral regions (horizontal axis), for: Fig. 2(a), paired-strips nanoantennas; and Fig. 2(b), single-strip gratings. Figures 2(c) and 2(d) show the 2D distributions of the electric field enhancement ratio at resonant wavelengths (using the no metal structure model as the reference) for: Fig. 2(c), paired-strips nanoantennas; and Fig. 2(d), single-strip gratings. The value Eref is the average electric field without the metallic nanostructure and the normalized average electric field is Eavg/ Eref.

Fig. 3
Fig. 3

Normalized maximum electric field versus wavelength for paired-strips and single-strip nanostructures, under TE and TM illumination. The value Eref is the maximum electric field without the metal, for both TE and TM illumination.

Fig. 4
Fig. 4

Two types of nanostructures that are positioned on the bottom of a distinct absorber layer: Fig. 4(a), paired-strips nanoantennas; and Fig. 4(b), single-strip gratings.

Fig. 5
Fig. 5

Normalized average absorption (A(λ)avg /A(λ)ref) versus wavelength for: Fig. 5(a), paired-strips nanoantennas; and Fig. 5(b), single-strip gratings using different refractive index absorber layers (n = a + i0.01, where a = 1, 1.33, 1.55, and 2). Figures 5(c)-5(e) show the 2D distributions of the electric field enhancement ratio, at absorption peaks for the n = 2 + i0.01 absorber layer. The minimum value of the electric field in Figs. 5(c)-5(e) is used as the reference value. The ratios shown in the figures are: Fig. 5(c), for single-strip gratings; Fig. 5(d), for paired-strips nanoantennas; and Fig. 5(e), for the second peak at longer wavelengths of paired-strips nanoantennas. The value A(λ)ref, is A(λ)avg for a single-strip, using n = 1 + i0.01.

Fig. 6
Fig. 6

(a) Paired-strips nanoantennas are positioned at the bottom of an ultrathin absorber layer (thickness = 100 nm). Figure 6(b), the normalized average absorption (color scale) versus wavelength (vertical axis) for a given refractive index (horizontal axis) which ranges from n = 1.3 + i0.01 to n = 4.7 + i0.01. Figures 6(c)-6(e) show the 2D distributions of the electric field enhancement ratio for each curve in Fig. 6(b). The minimum value of electric field in these three figures is used as the reference. Figure 6(c) shows the distribution for point p1 on curve 1, Fig. 6(d) for point p2 on curve 2, and Fig. 6(e) for point p3 on curve 3. The minimum value of average absorption in Fig. 6(b) is used as a reference for the normalized calculation.

Fig. 7
Fig. 7

Normalized average absorption (color scale) versus wavelength (vertical axis) using varying thicknesses of the absorber layer (horizontal axis), which ranges from 20 to 300 nm. Paired-strips and single-strip nanostructures, embedded in absorber layers with two values of refractive index absorber layer (n = 1 + i0.01 and n = 2 + i0.01), are discussed: Fig. 7(a), paired-strips, Re(n) = 1; Fig. 7(b), paired-strips, Re(n) = 2; Fig. 7(c), single-strip, Re(n) = 1; and Fig. 7(d), single-strip, Re(n) = 2. The reference for the normalized calculation is the minimum value of the average absorption in Figs. 7(a)-7(d).

Fig. 8
Fig. 8

The 2D distributions of electric field enhancement ratio for four conditions in Fig. 7: Fig. 8(a), for point P1 in Fig. 7(a); Fig. 8(b), for point P2 in Fig. 7(c); Fig. 8(c), for point P3 in Fig. 7(d); and Fig. 8(d), for point P4 in Fig. 7(b). The minimum value of electric field in Figs. 8(a)-8(d) is used as a reference for the electric field enhancement ratio calculation.

Fig. 9
Fig. 9

Normalized average absorption (color scale) versus wavelength (vertical axis) for varying thicknesses of the absorber layer (horizontal axis), which range from 10 to 200 nm, for paired-strips nanoantennas embedded in an absorber layer, consisting of P3HT:PCBM with a 1:1 weight ratio. The minimum value of the average absorption in this 2D map is used as a reference for the normalized calculation.

Tables (1)

Tables Icon

Table 1 Absorption enhancement factor of an absorber layer with n = 2 + i0.01and different thicknesses

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A slab = 1 2 ωIm(ε) v | E | 2 dv'
E avg = | E | total area of integral region
A (λ) avg = A slab (λ) total area
L = λ 2 n m

Metrics