Abstract

The use of ultrathin c-Si (crystalline silicon) wafers thinner than 20 μm for solar cells is a very promising approach to realize dramatic reduction in cell cost. However, the ultrathin c-Si requires highly effective light trapping to compensate optical absorption reduction. Conventional texturing in micron scale is hardly applicable to the ultrathin c-Si wafers; thus, nano scale texturing is demanded. In general, nanotexturing is inevitably accompanied by surface area enlargements, which must be minimized in order to suppress surface recombination of minority carriers. In this study, we demonstrate using optical simulations that periodic c-Si nanodisk arrays of short heights less than 200 nm and optimal periods are very useful in terms of light trapping in the ultrathin c-Si wafers while low surface area enlargements are maintained. Double side texturing with the nanodisk arrays leads to over 90% of the Lambertian absorption limit while the surface area enlargement is kept below 1.5.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2009).
  2. J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
    [CrossRef]
  3. C. Berge, M. Zhu, W. Brendle, M. B. Schubert, and J. H. Werner, “150-mm layer transfer for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3102–3107 (2006).
    [CrossRef]
  4. S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials,” Nano Lett. 13(9), 4393–4398 (2013).
    [CrossRef] [PubMed]
  5. S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
    [CrossRef]
  6. S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).
  7. A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells 114(0), 110–135 (2013).
    [CrossRef]
  8. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
    [CrossRef]
  9. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  10. S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [CrossRef] [PubMed]
  11. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
    [CrossRef] [PubMed]
  12. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [CrossRef] [PubMed]
  13. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
    [CrossRef] [PubMed]
  14. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
    [CrossRef]
  15. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
    [CrossRef] [PubMed]
  16. A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
    [CrossRef]
  17. H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2(17), 3144–3171 (2014).
    [CrossRef]
  18. M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
    [CrossRef]
  19. M. Rahman and S. Khan, “Advances in surface passivation of c-Si solar cells,” Mater. Renewable Sustainable Energy 1(1), 1–11 (2012).
  20. A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
    [CrossRef]
  21. J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
    [CrossRef] [PubMed]
  22. J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography,” Appl. Phys. Express 5(2), 025201 (2012).
    [CrossRef]
  23. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
    [CrossRef] [PubMed]
  24. P. R. Pudasaini, D. Elam, and A. A. Ayon, “Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells,” J. Phys. D Appl. Phys. 46(23), 235104 (2013).
    [CrossRef]
  25. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
    [CrossRef]
  26. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [CrossRef] [PubMed]
  27. J. Gjessing, in Department of physics (University of Oslo, Oslo, 2011), Vol. Ph. D.
  28. J. Schmidt, A. Merkle, R. Bock, P. P. Altermatt, A. Cuevas, N.-P. Harder, B. Hoex, R. d. Sanden, E. Kessels, and R. Brendel, in 23rd European Photovoltaic Solar Energy Conference (Valencia, Spain, 2008).
  29. Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
    [CrossRef]
  30. X. Sheng, J. Hu, J. Michel, and L. C. Kimerling, “Light trapping limits in plasmonic solar cells: an analytical investigation,” Opt. Express 20(S4Suppl 4), A496–A501 (2012).
    [CrossRef] [PubMed]

2014 (3)

A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
[CrossRef]

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2(17), 3144–3171 (2014).
[CrossRef]

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

2013 (6)

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials,” Nano Lett. 13(9), 4393–4398 (2013).
[CrossRef] [PubMed]

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells 114(0), 110–135 (2013).
[CrossRef]

P. R. Pudasaini, D. Elam, and A. A. Ayon, “Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells,” J. Phys. D Appl. Phys. 46(23), 235104 (2013).
[CrossRef]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
[CrossRef]

2012 (8)

X. Sheng, J. Hu, J. Michel, and L. C. Kimerling, “Light trapping limits in plasmonic solar cells: an analytical investigation,” Opt. Express 20(S4Suppl 4), A496–A501 (2012).
[CrossRef] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[CrossRef] [PubMed]

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography,” Appl. Phys. Express 5(2), 025201 (2012).
[CrossRef]

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[CrossRef]

M. Rahman and S. Khan, “Advances in surface passivation of c-Si solar cells,” Mater. Renewable Sustainable Energy 1(1), 1–11 (2012).

2011 (3)

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
[CrossRef] [PubMed]

2010 (2)

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

2008 (1)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

2006 (1)

C. Berge, M. Zhu, W. Brendle, M. B. Schubert, and J. H. Werner, “150-mm layer transfer for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3102–3107 (2006).
[CrossRef]

2000 (1)

A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[CrossRef]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

1984 (1)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[CrossRef]

Aberle, A. G.

A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[CrossRef]

Ayon, A. A.

P. R. Pudasaini, D. Elam, and A. A. Ayon, “Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells,” J. Phys. D Appl. Phys. 46(23), 235104 (2013).
[CrossRef]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Banerjee, S. K.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

Bedell, S. W.

S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).

Berge, C.

C. Berge, M. Zhu, W. Brendle, M. B. Schubert, and J. H. Werner, “150-mm layer transfer for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3102–3107 (2006).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Branz, H. M.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[CrossRef] [PubMed]

Brendle, W.

C. Berge, M. Zhu, W. Brendle, M. B. Schubert, and J. H. Werner, “150-mm layer transfer for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3102–3107 (2006).
[CrossRef]

Brooks, B. G.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[CrossRef]

Brueck, S. R. J.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

Chang, H.-C.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2(17), 3144–3171 (2014).
[CrossRef]

Chang, H.-M.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
[CrossRef]

Chen, G.

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Chen, H.-L.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
[CrossRef]

Chen, S.-H.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
[CrossRef]

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

Cheng, C.-C.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
[CrossRef]

Chi, Y.-M.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
[CrossRef]

Cho, K.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography,” Appl. Phys. Express 5(2), 025201 (2012).
[CrossRef]

Clews, P.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Cody, G. D.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[CrossRef]

Cruz-Campa, J. L.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Cui, Y.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials,” Nano Lett. 13(9), 4393–4398 (2013).
[CrossRef] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Das, U. K.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

Depauw, V.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

Elam, D.

P. R. Pudasaini, D. Elam, and A. A. Ayon, “Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells,” J. Phys. D Appl. Phys. 46(23), 235104 (2013).
[CrossRef]

Fan, S.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials,” Nano Lett. 13(9), 4393–4398 (2013).
[CrossRef] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Fogel, K.

S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).

Füchsel, K.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[CrossRef]

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

Garnett, E.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials,” Nano Lett. 13(9), 4393–4398 (2013).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Goodrich, A.

A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells 114(0), 110–135 (2013).
[CrossRef]

Green, M. A.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

Grubbs, R. K.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Gupta, V. P.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Hacke, P.

A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells 114(0), 110–135 (2013).
[CrossRef]

Han, S. E.

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

He, J.-H.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2(17), 3144–3171 (2014).
[CrossRef]

Hekmatshoar, B.

S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).

Hilali, M. M.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

Hu, J.

Ingenito, A.

A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
[CrossRef]

Isabella, O.

A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
[CrossRef]

James, T. L.

A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells 114(0), 110–135 (2013).
[CrossRef]

Jawarani, D.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

John, J. A.

S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).

Käsebier, T.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[CrossRef]

Khan, S.

M. Rahman and S. Khan, “Advances in surface passivation of c-Si solar cells,” Mater. Renewable Sustainable Energy 1(1), 1–11 (2012).

Kim, I.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography,” Appl. Phys. Express 5(2), 025201 (2012).
[CrossRef]

Kim, J.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography,” Appl. Phys. Express 5(2), 025201 (2012).
[CrossRef]

Kim, W. M.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography,” Appl. Phys. Express 5(2), 025201 (2012).
[CrossRef]

Kimerling, L. C.

Kley, E.-B.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[CrossRef]

Krauss, T. F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

Kroll, M.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[CrossRef]

Ku, Z.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

Lai, K.-Y.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2(17), 3144–3171 (2014).
[CrossRef]

Lai, Y.-S.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
[CrossRef]

Lauro, P. A.

S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).

Lee, K.-S.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography,” Appl. Phys. Express 5(2), 025201 (2012).
[CrossRef]

Lee, S. C.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

Lee, T. S.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography,” Appl. Phys. Express 5(2), 025201 (2012).
[CrossRef]

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

Li, Y.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials,” Nano Lett. 13(9), 4393–4398 (2013).
[CrossRef] [PubMed]

Liao, Y.-C.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
[CrossRef]

Lien, D.-H.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2(17), 3144–3171 (2014).
[CrossRef]

Lin, C.

Lin, C.-A.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2(17), 3144–3171 (2014).
[CrossRef]

Lin, K.-T.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
[CrossRef]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

Margolis, R.

A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells 114(0), 110–135 (2013).
[CrossRef]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

Mathew, L.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

Michel, J.

Nielson, G. N.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Oh, J.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[CrossRef] [PubMed]

Okandan, M.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Onyegam, E. U.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

Otto, M.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[CrossRef]

Pertsch, T.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[CrossRef]

Pluym, T.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

Povinelli, M. L.

Priolo, F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

Pudasaini, P. R.

P. R. Pudasaini, D. Elam, and A. A. Ayon, “Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells,” J. Phys. D Appl. Phys. 46(23), 235104 (2013).
[CrossRef]

Rahman, M.

M. Rahman and S. Khan, “Advances in surface passivation of c-Si solar cells,” Mater. Renewable Sustainable Energy 1(1), 1–11 (2012).

Rao, R. A.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

Resnick, P. J.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Sadana, D.

S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).

Saha, S.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

Sarkar, D.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

Schubert, M. B.

C. Berge, M. Zhu, W. Brendle, M. B. Schubert, and J. H. Werner, “150-mm layer transfer for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3102–3107 (2006).
[CrossRef]

Shahrjerdi, D.

S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).

Sheng, X.

Smith, R. S.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

Sopori, B.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells 114(0), 110–135 (2013).
[CrossRef]

Sosa, N.

S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[CrossRef]

Tsai, M.-L.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2(17), 3144–3171 (2014).
[CrossRef]

Tseng, S.-C.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
[CrossRef]

Tünnermann, A.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[CrossRef]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

Wang, H.-P.

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2(17), 3144–3171 (2014).
[CrossRef]

Wang, K. X.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials,” Nano Lett. 13(9), 4393–4398 (2013).
[CrossRef] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Wang, Q.

A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells 114(0), 110–135 (2013).
[CrossRef]

Wang, S.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials,” Nano Lett. 13(9), 4393–4398 (2013).
[CrossRef] [PubMed]

Wehrspohn, R.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[CrossRef]

Weil, B. D.

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials,” Nano Lett. 13(9), 4393–4398 (2013).
[CrossRef] [PubMed]

Werner, J. H.

C. Berge, M. Zhu, W. Brendle, M. B. Schubert, and J. H. Werner, “150-mm layer transfer for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3102–3107 (2006).
[CrossRef]

Woodhouse, M.

A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells 114(0), 110–135 (2013).
[CrossRef]

Xia, D.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

Xu, D.

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

Yablonovitch, E.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[CrossRef]

Yang, P.

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Yuan, H.-C.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[CrossRef] [PubMed]

Zeman, M.

A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
[CrossRef]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

Zhu, M.

C. Berge, M. Zhu, W. Brendle, M. B. Schubert, and J. H. Werner, “150-mm layer transfer for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3102–3107 (2006).
[CrossRef]

Zubia, D.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

ACS Photonics (1)

A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
[CrossRef]

Adv. Mater. (1)

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. 23(2), 147–179 (2011).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography,” Appl. Phys. Express 5(2), 025201 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible ∼25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. 102(16), 163904 (2013).
[CrossRef]

Energy Environ. Sci. (1)

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, and K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6(3), 935 (2013).
[CrossRef]

IEEE J. Photovoltaics (1)

S. W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. A. Lauro, J. A. John, N. Sosa, and D. Sadana, “Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies,” IEEE J. Photovoltaics 2(2), 141–147 (2012).

IEEE Trans. Electron Dev. (1)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[CrossRef]

J. Appl. Phys. (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

J. Mater. Chem. C (1)

H.-P. Wang, D.-H. Lien, M.-L. Tsai, C.-A. Lin, H.-C. Chang, K.-Y. Lai, and J.-H. He, “Photon management in nanostructured solar cells,” J. Mater. Chem. C 2(17), 3144–3171 (2014).
[CrossRef]

J. Phys. D Appl. Phys. (1)

P. R. Pudasaini, D. Elam, and A. A. Ayon, “Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells,” J. Phys. D Appl. Phys. 46(23), 235104 (2013).
[CrossRef]

Mater. Renewable Sustainable Energy (1)

M. Rahman and S. Khan, “Advances in surface passivation of c-Si solar cells,” Mater. Renewable Sustainable Energy 1(1), 1–11 (2012).

Nano Lett. (4)

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials,” Nano Lett. 13(9), 4393–4398 (2013).
[CrossRef] [PubMed]

Nat. Commun. (2)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[CrossRef] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[CrossRef] [PubMed]

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

Opt. Express (2)

Proc. SPIE (1)

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[CrossRef]

Sol. Energy Mater. Sol. Cells (3)

A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, and M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells 114(0), 110–135 (2013).
[CrossRef]

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14.0 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

C. Berge, M. Zhu, W. Brendle, M. B. Schubert, and J. H. Werner, “150-mm layer transfer for monocrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3102–3107 (2006).
[CrossRef]

Other (3)

J. Gjessing, in Department of physics (University of Oslo, Oslo, 2011), Vol. Ph. D.

J. Schmidt, A. Merkle, R. Bock, P. P. Altermatt, A. Cuevas, N.-P. Harder, B. Hoex, R. d. Sanden, E. Kessels, and R. Brendel, in 23rd European Photovoltaic Solar Energy Conference (Valencia, Spain, 2008).

J. Nelson, The Physics of Solar Cells (Imperial College Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of nanodisk arrays on an ultrathin c-Si wafer. c-Si nanodisk arrays are placed on the ultrathin c-Si wafers in two dimensional hexagonal arrays.

Fig. 2
Fig. 2

(a) Reflectance contour map from c-Si bulk wafers with the nanodisk arrays of various periods and heights. The dashed line denotes a contour line of 10% reflectance. (b) Reflectance as a function of wavelength from c-Si bulk wafers with the nanodisk arrays of 100 nm height and three different periods (300 nm, 500 nm, 800 nm). For the sake of comparison, the reflectance from planar c-Si with ARC was also plot together. (c) Reflectance as a function of wavelength from c-Si bulk wafers with the nanodisk arrays of 500 nm period and four different heights (100 nm, 300 nm, 500 nm, 900 nm).

Fig. 3
Fig. 3

(a) Reflectance contour map from c-Si bulk wafers with the antireflective coated nanodisk arrays. Periods and heights are varied. The dashed line denotes a contour line of 4% reflectance. (b) Reflectance as a function of wavelength from c-Si bulk wafers with the antireflective coated nanodisk arrays of 100 nm height and three different periods (300 nm, 500 nm, 800 nm). (c) Reflectance as a function of wavelength from c-Si bulk wafers with the antireflective coated nanodisk arrays of 500 nm period and four different heights (100 nm, 300 nm, 500 nm, 900 nm).

Fig. 4
Fig. 4

(a) Fractional high order diffracted transmittance as a function of wavelength by varying the periods of the nanodisk arrays. (b) Photocurrents generated from the high order diffracted transmission in the wavelength range of 700 nm ~1100 nm as a function of the periods of the nanodisk arrays.

Fig. 5
Fig. 5

(a) The maximum photocurrent generated in 2 micron thickness c-Si wafers as a function of nanodisk height and period. (b) Photocurrents generated from solar radiation in the short wavelength region (350 nm ~700 nm) and the long wavelength region (700 nm ~1100 nm). Total photocurrent (Jph,total), which is the sum of Jph1 and Jph2, is also shown. (c) Absorption spectra of 2 micron thickness c-Si wafers with nanodisk texturing as a function of wavelength for various periods (dotted lines). The solid lines are smoothened data by adjacent averaging, which are displayed only for the eye guide.

Fig. 6
Fig. 6

Contour map of photocurrents from 2 μm thickness c-Si wafers with varying filling factor and height.

Fig. 7
Fig. 7

Surface area enlargements with nanodisk texturing for various periods and heights of the nanodisks. The numbers with the dashed line indicate the surface area enlargement contour lines corresponding to 1.5 and 2.0, respectively.

Fig. 8
Fig. 8

(a) Simulated photocurrents generated in 2 μm thickness c-Si wafers with various texturing: A. planar with ARC, B. single side texturing with the nanodisk arrays of a 800 nm period, double side texturing with the nanodisk array periods of C. 800 nm, D. 1600 nm, and E. 2400 nm at the back side while the period of the front surface nanodisk arrays was maintained at 800 nm. The red dashed line indicates the maximum photocurrent in the Lambertian absorption limit. (b) Absorption spectra of 2 μm thickness c-Si wafers with single side or double side texturing of the nanodisk arrays. The absorption spectrum of planar c-Si with ARC is also shown for comparison. The blue and red solid lines are smoothened data for the eye guide. (c) Photocurrent density of c-Si wafers with texturing or without texturing and ARC for various c-Si wafer thickness. The Lambertian absorption limit is shown together. The cross-sectional images of c-Si wafers with single side or double side texturing are illustrated in the top figure. The nanodisk arrays are coated with orange-colored ARC. The yellow colored layer is an optical spacer of SiO2. The gray layers denote the ideal reflector (PEC).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin θ m = m ( λ / n S i p )

Metrics