Abstract

We present a waveguide coupling approach for planar waveguide solar concentrator. In this approach, total internal reflection (TIR)-based symmetric air prisms are used as couplers to increase the coupler reflectivity and to maximize the optical efficiency. The proposed concentrator consists of a line focusing cylindrical lens array over a planar waveguide. The TIR-based couplers are located at the focal line of each lens to couple the focused sunlight into the waveguide. The optical system was modeled and simulated with a commercial ray tracing software (Zemax). Results show that the system used with optimized TIR-based couplers can achieve 70% optical efficiency at 50 × geometrical concentration ratio, resulting in a flux concentration ratio of 35 without additional secondary concentrator. An acceptance angle of ± 7.5° is achieved in the x-z plane due to the use of cylindrical lens array as the primary concentrator.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
    [CrossRef]
  2. C. F. Chen, C. H. Lin, H. T. Jan, and Y. L. Yang, “Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method,” Opt. Commun. 282(3), 360–366 (2009).
    [CrossRef]
  3. J. C. Miñano, “Application of the conservation of etendue theorem for 2-D subdomains of the phase space in nonimaging concentrators,” Appl. Opt. 23(12), 2021–2025 (1984).
    [CrossRef] [PubMed]
  4. G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
    [CrossRef]
  5. D. Feuermann and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy 70(5), 423–430 (2001).
    [CrossRef]
  6. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
    [CrossRef] [PubMed]
  7. J. H. Karp and E. J. Ford, “Planar micro-optic concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 7407–7411 (2009).
    [CrossRef]
  8. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4Suppl 4), A673–A685 (2011).
    [CrossRef] [PubMed]
  9. R. Dhakal, J. Lee, and J. Kim, “Bio-inspired thin and flat solar concentrator for efficient, wide acceptance angle light collection,” Appl. Opt. 53(2), 306–315 (2014).
    [CrossRef] [PubMed]
  10. J. M. Kim and P. S. Dutta, “Optical efficiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. Energy Mater. Sol. Cells 103, 35–40 (2012).
    [CrossRef]
  11. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., A Mater. Sci. Process. 14(3), 235–254 (1977).
  12. J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
    [CrossRef] [PubMed]
  13. G. Pei, G. Q. Li, Y. H. Su, J. Ji, S. Riffat, and H. F. Zheng, “Preliminary ray tracing and experimental study on the effect of mirror coating on the optical efficiency of a solid dielectric compound parabolic concentrator,” Energies 5(12), 3627–3639 (2012).
    [CrossRef]
  14. S. Bouchard and S. Thibault, “Planar waveguide concentrator used with a seasonal tracker,” Appl. Opt. 51(28), 6848–6854 (2012).
    [CrossRef] [PubMed]
  15. S. Bouchard and S. Thibault, “GRIN planar waveguide concentrator used with a single axis tracker,” Opt. Express 22(S2Suppl 2), A248–A258 (2014).
    [CrossRef] [PubMed]
  16. D. Moore, G. R. Schmidt, and B. Unger, “Concentrated photovoltaic stepped planar light guide,” in International Optical Design Conference, OSA Technical Digest (CD) (OSA, 2010), paper JMB46P.
    [CrossRef]
  17. Y. Liu, R. Huang, and C. K. Madsen, “Design of a lens-to-channel waveguide system as a solar concentrator structure,” Opt. Express 22(S2Suppl 2), A198–A204 (2014).
    [CrossRef] [PubMed]
  18. J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 51(25), 6117–6124 (2012).
    [CrossRef] [PubMed]

2014 (3)

2012 (4)

J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 51(25), 6117–6124 (2012).
[CrossRef] [PubMed]

G. Pei, G. Q. Li, Y. H. Su, J. Ji, S. Riffat, and H. F. Zheng, “Preliminary ray tracing and experimental study on the effect of mirror coating on the optical efficiency of a solid dielectric compound parabolic concentrator,” Energies 5(12), 3627–3639 (2012).
[CrossRef]

S. Bouchard and S. Thibault, “Planar waveguide concentrator used with a seasonal tracker,” Appl. Opt. 51(28), 6848–6854 (2012).
[CrossRef] [PubMed]

J. M. Kim and P. S. Dutta, “Optical efficiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. Energy Mater. Sol. Cells 103, 35–40 (2012).
[CrossRef]

2011 (2)

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[CrossRef]

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4Suppl 4), A673–A685 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (3)

J. H. Karp and E. J. Ford, “Planar micro-optic concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 7407–7411 (2009).
[CrossRef]

C. F. Chen, C. H. Lin, H. T. Jan, and Y. L. Yang, “Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method,” Opt. Commun. 282(3), 360–366 (2009).
[CrossRef]

G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
[CrossRef]

2001 (1)

D. Feuermann and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy 70(5), 423–430 (2001).
[CrossRef]

1984 (1)

1977 (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., A Mater. Sci. Process. 14(3), 235–254 (1977).

Baker, K. A.

Bernal-Agustin, J. L.

G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
[CrossRef]

Bouchard, S.

Castro, J. M.

Chen, C. F.

C. F. Chen, C. H. Lin, H. T. Jan, and Y. L. Yang, “Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method,” Opt. Commun. 282(3), 360–366 (2009).
[CrossRef]

Dai, Y. J.

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[CrossRef]

Dhakal, R.

Dutta, P. S.

J. M. Kim and P. S. Dutta, “Optical efficiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. Energy Mater. Sol. Cells 103, 35–40 (2012).
[CrossRef]

Feuermann, D.

D. Feuermann and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy 70(5), 423–430 (2001).
[CrossRef]

Ford, E. J.

J. H. Karp and E. J. Ford, “Planar micro-optic concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 7407–7411 (2009).
[CrossRef]

Ford, J. E.

Fracastoro, G. V.

G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
[CrossRef]

Gordon, J. M.

D. Feuermann and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy 70(5), 423–430 (2001).
[CrossRef]

Hallas, J. M.

Huang, R.

Jan, H. T.

C. F. Chen, C. H. Lin, H. T. Jan, and Y. L. Yang, “Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method,” Opt. Commun. 282(3), 360–366 (2009).
[CrossRef]

Ji, J.

G. Pei, G. Q. Li, Y. H. Su, J. Ji, S. Riffat, and H. F. Zheng, “Preliminary ray tracing and experimental study on the effect of mirror coating on the optical efficiency of a solid dielectric compound parabolic concentrator,” Energies 5(12), 3627–3639 (2012).
[CrossRef]

Karp, J. H.

Kim, J.

Kim, J. M.

J. M. Kim and P. S. Dutta, “Optical efficiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. Energy Mater. Sol. Cells 103, 35–40 (2012).
[CrossRef]

Kostuk, R. K.

Lee, J.

Li, G. Q.

G. Pei, G. Q. Li, Y. H. Su, J. Ji, S. Riffat, and H. F. Zheng, “Preliminary ray tracing and experimental study on the effect of mirror coating on the optical efficiency of a solid dielectric compound parabolic concentrator,” Energies 5(12), 3627–3639 (2012).
[CrossRef]

Lin, C. H.

C. F. Chen, C. H. Lin, H. T. Jan, and Y. L. Yang, “Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method,” Opt. Commun. 282(3), 360–366 (2009).
[CrossRef]

Liu, Y.

Madsen, C. K.

Miñano, J. C.

Myer, B.

Pei, G.

G. Pei, G. Q. Li, Y. H. Su, J. Ji, S. Riffat, and H. F. Zheng, “Preliminary ray tracing and experimental study on the effect of mirror coating on the optical efficiency of a solid dielectric compound parabolic concentrator,” Energies 5(12), 3627–3639 (2012).
[CrossRef]

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., A Mater. Sci. Process. 14(3), 235–254 (1977).

Riffat, S.

G. Pei, G. Q. Li, Y. H. Su, J. Ji, S. Riffat, and H. F. Zheng, “Preliminary ray tracing and experimental study on the effect of mirror coating on the optical efficiency of a solid dielectric compound parabolic concentrator,” Energies 5(12), 3627–3639 (2012).
[CrossRef]

Su, Y. H.

G. Pei, G. Q. Li, Y. H. Su, J. Ji, S. Riffat, and H. F. Zheng, “Preliminary ray tracing and experimental study on the effect of mirror coating on the optical efficiency of a solid dielectric compound parabolic concentrator,” Energies 5(12), 3627–3639 (2012).
[CrossRef]

Sumathy, K.

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[CrossRef]

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., A Mater. Sci. Process. 14(3), 235–254 (1977).

Thibault, S.

Tremblay, E. J.

Wang, R. Z.

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[CrossRef]

Xie, W. T.

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[CrossRef]

Yang, Y. L.

C. F. Chen, C. H. Lin, H. T. Jan, and Y. L. Yang, “Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method,” Opt. Commun. 282(3), 360–366 (2009).
[CrossRef]

Zhang, D.

Zheng, H. F.

G. Pei, G. Q. Li, Y. H. Su, J. Ji, S. Riffat, and H. F. Zheng, “Preliminary ray tracing and experimental study on the effect of mirror coating on the optical efficiency of a solid dielectric compound parabolic concentrator,” Energies 5(12), 3627–3639 (2012).
[CrossRef]

Zubi, G.

G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
[CrossRef]

Appl. Opt. (5)

Appl. Phys., A Mater. Sci. Process. (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., A Mater. Sci. Process. 14(3), 235–254 (1977).

Energies (1)

G. Pei, G. Q. Li, Y. H. Su, J. Ji, S. Riffat, and H. F. Zheng, “Preliminary ray tracing and experimental study on the effect of mirror coating on the optical efficiency of a solid dielectric compound parabolic concentrator,” Energies 5(12), 3627–3639 (2012).
[CrossRef]

Opt. Commun. (1)

C. F. Chen, C. H. Lin, H. T. Jan, and Y. L. Yang, “Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method,” Opt. Commun. 282(3), 360–366 (2009).
[CrossRef]

Opt. Express (4)

Proc. SPIE (1)

J. H. Karp and E. J. Ford, “Planar micro-optic concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 7407–7411 (2009).
[CrossRef]

Renew. Sustain. Energy Rev. (2)

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[CrossRef]

G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
[CrossRef]

Sol. Energy (1)

D. Feuermann and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy 70(5), 423–430 (2001).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

J. M. Kim and P. S. Dutta, “Optical efficiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. Energy Mater. Sol. Cells 103, 35–40 (2012).
[CrossRef]

Other (1)

D. Moore, G. R. Schmidt, and B. Unger, “Concentrated photovoltaic stepped planar light guide,” in International Optical Design Conference, OSA Technical Digest (CD) (OSA, 2010), paper JMB46P.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A cross-section view of the proposed PWSC system. The incident sunlight concentrated by an array of cylindrical lens is coupled into the planar waveguide by the couplers placed at each focus lines. Then it propagates inside the waveguide by TIR to reach the PV cells on both edges. Inset A shows that the symmetric air prism redirects the focused sunlight into the waveguide by TIR at the waveguide-air prism interface while inset B shows that guided light within waveguide strikes a downstream coupler and escape from the waveguide by second TIR as loss.

Fig. 2
Fig. 2

Graphical representation of the geometry associated with the parameters used in Eqs. (2)-(4).

Fig. 3
Fig. 3

(a−c) Effect of waveguide length and thickness on optical efficiency of an F/1.81 lens with 10° coupling angle for three different coupler reflectivities R = 100%, 95%, and 90%. (d) Relationship between the optical efficiency and geometrical concentration ratio for three different coupler reflectivities extracted from the results in (a−c).

Fig. 4
Fig. 4

The figure shows that the basic angle θB of the symmetric air prism coupler is the sum of the incident angle θI and the marginal ray angle θM in the waveguide. When θB reaches the minimum value θBmin, marginal ray redirects with a small coupling angle, making it strikes the adjacent coupler immediately and escape from the waveguide by second TIR.

Fig. 5
Fig. 5

Optical efficiency η for three different Cgeo = 25, 50, and 75 versus the basic angle θB of the symmetric air prism.

Fig. 6
Fig. 6

The simulated optical efficiency at different losses and the corresponding flux concentration ratio as functions of Cgeo.

Fig. 7
Fig. 7

(a) Normalized optical efficiency for three different W = 90, 130, and 170 μm versus the incident angle in the y-z plane at Cgeo = 50. (b) Optical efficiency for three different coupler widths as a function of Cgeo.

Fig. 8
Fig. 8

Normalized optical efficiency as a function of the incident angle in the x-z plane at Cgeo = 50. Insets (a−d) show the effect of defocusing on the energy distribution on the focus plane with incident angles of 0° (point a), 5° (point b), 10° (point c), and 15° (point d), respectively.

Tables (1)

Tables Icon

Table 1 Parameters of the system tested in Zemax

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

C geo = L 2H
η d e c o u p l e ( P , Φ ) = ( 1 1 C l e n s ) P tan Φ / 2 H = ( 1 2 F / # tan θ ) P tan Φ / 2 H
η p o t i s i o n ( P , Φ ) = R × η decouple ( P , Φ ) × exp ( α P / cos Φ )
η t o t a l = P Φ η p o t i s i o n ( P , Φ ) ( L r ) / 2 r , P = r , 3 r , 5 r , , L r
θ I m i n = θ C = s i n 1 1 n w
θ B min = θ I min + θ M
θ M =ta n 1 [ tanθ+ 1 2 n w F/# ]

Metrics