Abstract

A new type of LED, single chip super broadband InGaN/GaN LED is presented in this paper. The LED is composed of an InGaN/GaN quantum well layer deposited on the nanostructured sapphire substrate, inscribed by femtosecond laser ablation. The super broadband emission is enabled due to the large variation of indium composition in a small local area so that different wavelengths can be emitted over a small area and the summation of these different emission wavelengths forms super broadband emission, which covers the entire visible spectral range. The result of this paper represents a major technological advance in white light LED lighting because it enables single chip white LED lighting without the need of phosphor down converter that can significantly improve the efficiency without the Stokes loss and reduce the cost.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
    [CrossRef]
  2. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [CrossRef] [PubMed]
  3. T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(7A7R), 3976–3981 (1999).
    [CrossRef]
  4. S. Nakamura, T. Mukai, and M. Senoh, “Candela class high brightness InGaN/AlGaN double heterostructure blue light emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
    [CrossRef]
  5. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34(10B10B), L1332–L1335 (1995).
    [CrossRef]
  6. T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth 189-190, 778–781 (1998).
    [CrossRef]
  7. T. Mukai, M. Yamada, and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Jpn. J. Appl. Phys. 37(11B11B), L1358–L1361 (1998).
    [CrossRef]
  8. T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(5A5A), L479–L481 (1998).
    [CrossRef]
  9. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
    [CrossRef]
  10. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [CrossRef]
  11. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
    [CrossRef]
  12. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
    [CrossRef]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  14. D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
    [CrossRef]
  15. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
    [CrossRef]
  16. S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
    [CrossRef]
  17. S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
    [CrossRef]
  18. Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
    [CrossRef]
  19. E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
    [CrossRef]
  20. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
    [CrossRef] [PubMed]
  21. F. Qian, S. Gradečak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
    [CrossRef] [PubMed]
  22. W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
    [CrossRef]
  23. Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
    [CrossRef]

2011 (2)

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[CrossRef]

Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
[CrossRef]

2010 (1)

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[CrossRef]

2009 (1)

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[CrossRef]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

2007 (1)

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

2005 (3)

F. Qian, S. Gradečak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[CrossRef]

2002 (1)

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

1999 (2)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(7A7R), 3976–3981 (1999).
[CrossRef]

1998 (4)

T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth 189-190, 778–781 (1998).
[CrossRef]

T. Mukai, M. Yamada, and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Jpn. J. Appl. Phys. 37(11B11B), L1358–L1361 (1998).
[CrossRef]

T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(5A5A), L479–L481 (1998).
[CrossRef]

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

1997 (2)

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[CrossRef]

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

1996 (2)

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

1995 (1)

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34(10B10B), L1332–L1335 (1995).
[CrossRef]

1994 (1)

S. Nakamura, T. Mukai, and M. Senoh, “Candela class high brightness InGaN/AlGaN double heterostructure blue light emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Aloni, S.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Amoruso, S.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[CrossRef]

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

Asif Khan, M.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Ausanio, G.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[CrossRef]

Banerjee, A.

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[CrossRef]

Bhattacharya, P.

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[CrossRef]

Bruzzese, R.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[CrossRef]

Campbell, E. E. B.

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

Chang, C. S.

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[CrossRef]

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[CrossRef]

Chen, Z.

Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
[CrossRef]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Cho, Y.-H.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Chuang, S. L.

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[CrossRef]

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[CrossRef]

Crawford, M. H.

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[CrossRef]

DenBaars, S. P.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Fischer, A. J.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Gainer, G. H.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Gaska, R.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Gradecak, S.

F. Qian, S. Gradečak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

Guo, C.

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

Guo, W.

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[CrossRef]

Iannotti, V.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[CrossRef]

Iwasa, N.

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34(10B10B), L1332–L1335 (1995).
[CrossRef]

Jia, C.

Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
[CrossRef]

Jiang, Y.

Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
[CrossRef]

Keller, S.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Kikuchi, A.

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[CrossRef]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Kishino, K.

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[CrossRef]

Kuokstis, E.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Kuykendall, T.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Lanotte, L.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[CrossRef]

Li, Y.

F. Qian, S. Gradečak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

Li, Z.

Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
[CrossRef]

Lieber, C. M.

F. Qian, S. Gradečak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Mishra, U. K.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Morita, D.

T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth 189-190, 778–781 (1998).
[CrossRef]

Mukai, T.

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(7A7R), 3976–3981 (1999).
[CrossRef]

T. Mukai, M. Yamada, and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Jpn. J. Appl. Phys. 37(11B11B), L1358–L1361 (1998).
[CrossRef]

T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth 189-190, 778–781 (1998).
[CrossRef]

T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(5A5A), L479–L481 (1998).
[CrossRef]

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34(10B10B), L1332–L1335 (1995).
[CrossRef]

S. Nakamura, T. Mukai, and M. Senoh, “Candela class high brightness InGaN/AlGaN double heterostructure blue light emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Nagahama, S.

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34(10B10B), L1332–L1335 (1995).
[CrossRef]

Nakamura, S.

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(7A7R), 3976–3981 (1999).
[CrossRef]

T. Mukai, M. Yamada, and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Jpn. J. Appl. Phys. 37(11B11B), L1358–L1361 (1998).
[CrossRef]

T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth 189-190, 778–781 (1998).
[CrossRef]

T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(5A5A), L479–L481 (1998).
[CrossRef]

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34(10B10B), L1332–L1335 (1995).
[CrossRef]

S. Nakamura, T. Mukai, and M. Senoh, “Candela class high brightness InGaN/AlGaN double heterostructure blue light emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Narimatsu, H.

T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(5A5A), L479–L481 (1998).
[CrossRef]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Ooi, B. S.

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[CrossRef]

Qian, F.

F. Qian, S. Gradečak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Sekiguchi, H.

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[CrossRef]

Senoh, M.

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34(10B10B), L1332–L1335 (1995).
[CrossRef]

S. Nakamura, T. Mukai, and M. Senoh, “Candela class high brightness InGaN/AlGaN double heterostructure blue light emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Shur, M. S.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Simin, G.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Song, J. J.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Spinelli, N.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[CrossRef]

Stoian, R.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Tao, Y.

Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
[CrossRef]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Ulrich, P.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Varel, H.

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

Velotta, R.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[CrossRef]

Vitiello, M.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[CrossRef]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

Wahmer, M.

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

Wang, X.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[CrossRef]

Wen, C. Y.

F. Qian, S. Gradečak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

Yamada, M.

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(7A7R), 3976–3981 (1999).
[CrossRef]

T. Mukai, M. Yamada, and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Jpn. J. Appl. Phys. 37(11B11B), L1358–L1361 (1998).
[CrossRef]

Yamada, T.

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34(10B10B), L1332–L1335 (1995).
[CrossRef]

Yang, J. W.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Yang, P.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Yang, Z.

Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
[CrossRef]

Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
[CrossRef]

Yu, T.

Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
[CrossRef]

Zhang, G.

Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
[CrossRef]

Appl. Phys. Lett. (6)

S. Nakamura, T. Mukai, and M. Senoh, “Candela class high brightness InGaN/AlGaN double heterostructure blue light emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[CrossRef]

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Appl. Surf. Sci. (3)

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci. 257(18), 8062–8066 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[CrossRef]

J. Cryst. Growth (1)

T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth 189-190, 778–781 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (4)

T. Mukai, M. Yamada, and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Jpn. J. Appl. Phys. 37(11B11B), L1358–L1361 (1998).
[CrossRef]

T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(5A5A), L479–L481 (1998).
[CrossRef]

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34(10B10B), L1332–L1335 (1995).
[CrossRef]

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38(7A7R), 3976–3981 (1999).
[CrossRef]

Nano Lett. (1)

F. Qian, S. Gradečak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Phys. Rev. B (2)

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The schematic experimental setup for creating nanostructures on sapphire substrate.

Fig. 2
Fig. 2

The experimentally measured spot size as a function of number of laser pulses under the femtosecond laser fluence of 5 J/cm2.

Fig. 3
Fig. 3

The experimentally measured ablation depth as a function of number of laser pulses under the femtosecond laser irradiation of 5 J/cm2.

Fig. 4
Fig. 4

The surface morphology of the sapphire substrate after the femtosecond laser ablation treatment.

Fig. 5
Fig. 5

The schematic of (a) the LED grown on the nanostructured sapphire substrate, and (b) the configuration of LED layers.

Fig. 6
Fig. 6

The pictures of emitted light at different areas of the substrate. (a) blue light observed on the planar substrate area, (b) blue violet light observed on the nanostructured substrate area, (c) cyan light observed on the nanostructured area, and (d) green light observed on the nanostructured area.

Fig. 7
Fig. 7

Electroluminescence emission spectra of the LED on the nanostructured sapphire substrate showing both blue and red shifts.

Fig. 8
Fig. 8

The super broadband spectra generated by the InGaN/GaN LED grown on the nanostructured sapphire substrate. The designed spectrum is also displayed as a reference.

Fig. 9
Fig. 9

A STEM image of quantum well of InGaN/GaN LED grown on nanostructured sapphire substrate.

Tables (2)

Tables Icon

Table 1 Relative Composition of InGaN/GaN LED at the Location of Emitting Wavelength 470 nm

Tables Icon

Table 2 Indium Compositions at Different Wavelength Emission Regions

Metrics