Abstract

We propose multi-periodic nanostructures yielded by superposition of multiple binary gratings for wide control over photon emission in thin-film devices. We present wavelength- and angle-resolved photoluminescence measurements of multi-periodically nanostructured organic light-emitting layers. The spectral resonances are determined by the periodicities of the individual gratings. By varying component duty cycles we tune the relative intensity of the main resonance from 12% to 82%. Thus, we achieve simultaneous control over the spectral resonance positions and relative intensities.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
    [CrossRef]
  2. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
    [CrossRef]
  3. S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
    [CrossRef]
  4. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
    [CrossRef]
  5. A. David, H. Benisty, and C. Weisbuch, “Photonic crystal light-emitting sources,” Rep. Prog. Phys. 75(12), 126501 (2012).
    [CrossRef] [PubMed]
  6. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
    [CrossRef]
  7. J. Herrnsdorf, B. Guilhabert, Y. Chen, A. Kanibolotsky, A. Mackintosh, R. Pethrick, P. Skabara, E. Gu, N. Laurand, and M. Dawson, “Flexible blue-emitting encapsulated organic semiconductor DFB laser,” Opt. Express 18(25), 25535–25545 (2010).
    [CrossRef] [PubMed]
  8. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [CrossRef] [PubMed]
  9. J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340 (2000).
    [CrossRef]
  10. L. Tutt and J. F. Revelli, “Distribution of radiation from organic light-emitting diode structures with wavelength-scale gratings as a function of azimuth and polar angles,” Opt. Lett. 33(5), 503–505 (2008).
    [CrossRef] [PubMed]
  11. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008).
    [CrossRef]
  12. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(4), 2665 (2013).
    [PubMed]
  13. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
    [CrossRef]
  14. J.-W. Kim, J.-H. Jang, M.-C. Oh, J.-W. Shin, D.-H. Cho, J.-H. Moon, and J.-I. Lee, “FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer,” Opt. Express 22(1), 498–507 (2014).
    [CrossRef] [PubMed]
  15. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
    [CrossRef] [PubMed]
  16. A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
    [CrossRef]
  17. W.-C. Tan, J. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
    [CrossRef]
  18. D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46(9), 1385–1391 (2007).
    [CrossRef] [PubMed]
  19. I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
    [CrossRef]
  20. C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett. 37(13), 2646–2648 (2012).
    [CrossRef] [PubMed]
  21. R. F. Kazarinov and C. Henry, “Second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 144–150 (1985).
    [CrossRef]
  22. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
    [CrossRef]
  23. Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold,” J. Vac. Sci. Technol. B. 20(6), 2867 (2002).
  24. B. A. Sexton and R. J. Marnock, “Characterization of High Resolution Resists and Metal Shims by Scanning Probe Microscopy,” Microsc. Microanal. 6(2), 129–136 (2000).
    [PubMed]
  25. C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010).
    [CrossRef]
  26. M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B. 30(3), 031601 (2012).
  27. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  28. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,” J. Opt. Soc. Am. A 17(7), 1221–1230 (2000).
    [CrossRef] [PubMed]

2014 (1)

2013 (2)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(4), 2665 (2013).
[PubMed]

S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
[CrossRef]

2012 (4)

A. David, H. Benisty, and C. Weisbuch, “Photonic crystal light-emitting sources,” Rep. Prog. Phys. 75(12), 126501 (2012).
[CrossRef] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett. 37(13), 2646–2648 (2012).
[CrossRef] [PubMed]

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B. 30(3), 031601 (2012).

2010 (6)

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
[CrossRef]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

J. Herrnsdorf, B. Guilhabert, Y. Chen, A. Kanibolotsky, A. Mackintosh, R. Pethrick, P. Skabara, E. Gu, N. Laurand, and M. Dawson, “Flexible blue-emitting encapsulated organic semiconductor DFB laser,” Opt. Express 18(25), 25535–25545 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[CrossRef]

2009 (1)

M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[CrossRef]

2008 (2)

L. Tutt and J. F. Revelli, “Distribution of radiation from organic light-emitting diode structures with wavelength-scale gratings as a function of azimuth and polar angles,” Opt. Lett. 33(5), 503–505 (2008).
[CrossRef] [PubMed]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008).
[CrossRef]

2007 (1)

2003 (1)

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

2002 (1)

Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold,” J. Vac. Sci. Technol. B. 20(6), 2867 (2002).

2000 (4)

B. A. Sexton and R. J. Marnock, “Characterization of High Resolution Resists and Metal Shims by Scanning Probe Microscopy,” Microsc. Microanal. 6(2), 129–136 (2000).
[PubMed]

D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,” J. Opt. Soc. Am. A 17(7), 1221–1230 (2000).
[CrossRef] [PubMed]

W.-C. Tan, J. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
[CrossRef]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340 (2000).
[CrossRef]

1998 (1)

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

1995 (1)

1994 (1)

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
[CrossRef]

1985 (1)

R. F. Kazarinov and C. Henry, “Second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 144–150 (1985).
[CrossRef]

1977 (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[CrossRef]

Araoka, F.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[CrossRef]

Balin, I.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
[CrossRef]

Barié, N.

Barnes, W. L.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340 (2000).
[CrossRef]

Beere, H. E.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Bendickson, J. M.

Benisty, H.

A. David, H. Benisty, and C. Weisbuch, “Photonic crystal light-emitting sources,” Rep. Prog. Phys. 75(12), 126501 (2012).
[CrossRef] [PubMed]

Bremer, M.

Brundrett, D. L.

Bulovic, V.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Burrows, P. E.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Chen, Y.

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(4), 2665 (2013).
[PubMed]

Cho, D.-H.

Colocci, M.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Crawford, M. H.

M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[CrossRef]

Dahan, N.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
[CrossRef]

Dal Negro, L.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

David, A.

A. David, H. Benisty, and C. Weisbuch, “Photonic crystal light-emitting sources,” Rep. Prog. Phys. 75(12), 126501 (2012).
[CrossRef] [PubMed]

Dawson, M.

Dehm, S.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010).
[CrossRef]

Depauw, V.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(4), 2665 (2013).
[PubMed]

Depine, R. A.

Faist, J.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Forrest, S. R.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Gaburro, Z.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Garbuzov, D. Z.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Gaylord, T. K.

Gerken, M.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B. 30(3), 031601 (2012).

C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett. 37(13), 2646–2648 (2012).
[CrossRef] [PubMed]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008).
[CrossRef]

Geyer, U.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008).
[CrossRef]

Gleiss, S.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008).
[CrossRef]

Glytsis, E. N.

Grann, E. B.

Gu, E.

Gu, G.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Guilhabert, B.

Guttmann, M.

C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett. 37(13), 2646–2648 (2012).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010).
[CrossRef]

Hansen, M.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B. 30(3), 031601 (2012).

Harada, S.

Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold,” J. Vac. Sci. Technol. B. 20(6), 2867 (2002).

Hasman, E.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
[CrossRef]

Hauss, J.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008).
[CrossRef]

Henry, C.

R. F. Kazarinov and C. Henry, “Second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 144–150 (1985).
[CrossRef]

Herrnsdorf, J.

Hirai, Y.

Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold,” J. Vac. Sci. Technol. B. 20(6), 2867 (2002).

Isaka, S.

Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold,” J. Vac. Sci. Technol. B. 20(6), 2867 (2002).

Ishikawa, K.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[CrossRef]

Jakobs, P.-J.

C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett. 37(13), 2646–2648 (2012).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010).
[CrossRef]

Jang, J.-H.

Jeong, S. M.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[CrossRef]

Johnson, P.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Jory, M. J.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340 (2000).
[CrossRef]

Kanibolotsky, A.

Kazarinov, R. F.

R. F. Kazarinov and C. Henry, “Second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 144–150 (1985).
[CrossRef]

Khalfin, V. B.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Kikuta, H.

Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold,” J. Vac. Sci. Technol. B. 20(6), 2867 (2002).

Kim, J.-W.

Kleiner, V.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
[CrossRef]

Klinkhammer, S.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010).
[CrossRef]

Kluge, C.

Kobayasi, M.

Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold,” J. Vac. Sci. Technol. B. 20(6), 2867 (2002).

Kohlstedt, H.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B. 30(3), 031601 (2012).

Kolew, A.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010).
[CrossRef]

Koo, W. H.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[CrossRef]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(4), 2665 (2013).
[PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Lagendijk, A.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Laurand, N.

Lee, J.-I.

Lee, X.

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
[CrossRef]

Lemmer, U.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010).
[CrossRef]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008).
[CrossRef]

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(4), 2665 (2013).
[PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(4), 2665 (2013).
[PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Lupton, J. M.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340 (2000).
[CrossRef]

Mackintosh, A.

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Mappes, T.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010).
[CrossRef]

Marnock, R. J.

B. A. Sexton and R. J. Marnock, “Characterization of High Resolution Resists and Metal Shims by Scanning Probe Microscopy,” Microsc. Microanal. 6(2), 129–136 (2000).
[PubMed]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(4), 2665 (2013).
[PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Matterson, B. J.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340 (2000).
[CrossRef]

Measures, R. M.

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
[CrossRef]

Moharam, M. G.

Moon, J.-H.

Nishimura, S.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[CrossRef]

Oh, M.-C.

Okano, M.

Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold,” J. Vac. Sci. Technol. B. 20(6), 2867 (2002).

Othonos, A.

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
[CrossRef]

Oton, C. J.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Pavesi, L.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[CrossRef]

Pethrick, R.

Pommet, D. A.

Pradana, A.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B. 30(3), 031601 (2012).

C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett. 37(13), 2646–2648 (2012).
[CrossRef] [PubMed]

Preist, T.

W.-C. Tan, J. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
[CrossRef]

Rädler, M.

C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett. 37(13), 2646–2648 (2012).
[CrossRef] [PubMed]

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B. 30(3), 031601 (2012).

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Revelli, J. F.

Riedel, B.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008).
[CrossRef]

Righini, R.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Ritchie, D. A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Sambles, J.

W.-C. Tan, J. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
[CrossRef]

Samuel, I. D. W.

S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
[CrossRef]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340 (2000).
[CrossRef]

Sexton, B. A.

B. A. Sexton and R. J. Marnock, “Characterization of High Resolution Resists and Metal Shims by Scanning Probe Microscopy,” Microsc. Microanal. 6(2), 129–136 (2000).
[PubMed]

Shin, J.-W.

Skabara, P.

Skigin, D. C.

Takezoe, H.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[CrossRef]

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[CrossRef]

Tan, W.-C.

W.-C. Tan, J. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
[CrossRef]

Tanaka, Y.

Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold,” J. Vac. Sci. Technol. B. 20(6), 2867 (2002).

Toyooka, T.

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[CrossRef]

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Turnbull, G. A.

S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
[CrossRef]

Tutt, L.

Vannahme, C.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010).
[CrossRef]

Walther, C.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Weisbuch, C.

A. David, H. Benisty, and C. Weisbuch, “Photonic crystal light-emitting sources,” Rep. Prog. Phys. 75(12), 126501 (2012).
[CrossRef] [PubMed]

Wiersma, D. S.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
[CrossRef]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(4), 2665 (2013).
[PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Ziegler, M.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B. 30(3), 031601 (2012).

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[CrossRef]

Appl. Phys. Lett. (3)

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
[CrossRef]

S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
[CrossRef]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340 (2000).
[CrossRef]

Electron. Lett. (1)

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. F. Kazarinov and C. Henry, “Second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 144–150 (1985).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[CrossRef]

J. Appl. Phys. (1)

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B. (2)

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B. 30(3), 031601 (2012).

Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold,” J. Vac. Sci. Technol. B. 20(6), 2867 (2002).

Microelectron. Eng. (1)

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010).
[CrossRef]

Microsc. Microanal. (1)

B. A. Sexton and R. J. Marnock, “Characterization of High Resolution Resists and Metal Shims by Scanning Probe Microscopy,” Microsc. Microanal. 6(2), 129–136 (2000).
[PubMed]

Nat. Commun. (1)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(4), 2665 (2013).
[PubMed]

Nat. Photonics (2)

W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (3)

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

W.-C. Tan, J. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000).
[CrossRef]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. David, H. Benisty, and C. Weisbuch, “Photonic crystal light-emitting sources,” Rep. Prog. Phys. 75(12), 126501 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic and working principle of multi-periodic nanostructures. Multi-periodic nanostructures are constructed by superimposing multiple binary gratings using a logical disjunction operation. (a) The component gratings have periods Λi and ridge widths lrd,Λi giving duty cycles of lrd,Λii. (b),(c) The resulting multi-periodic nanostructure is again a binary grating with period Λ that is the least common multiple of the component gratings' periods. The component gratings’ periods determine the resonances’ emission wavelengths and angles. The relative resonances’ intensities are controlled by the duty cycles as shown schematically for the case of two different two-component gratings (b,c).

Fig. 2
Fig. 2

Fourier spectrum of a two-periodic nanostructure. (a) Calculated power Fourier spectrum of a 350|450 (lrd,350nm = 100 nm, lrd,450nm = 100 nm) multi-periodic nanostructure (black) together with the involved single period component spectra (red and green). The multi-periodic nanostructure spectrum comprises the dominant Fourier orders of the component gratings. (b) Control of Fourier spectrum of the 350|450 multi-periodic nanostructure for varying lrd,350nm and fixed lrd,450nm = 100 nm. The ridge width lrd,350nm of the 350-nm component grating provides wide control over the dominating Fourier orders 7 and 9.

Fig. 3
Fig. 3

Characterization of the nickel nanostructures by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Exemplarily shown is a multi-periodic grating of type 196|400. (a), SEM image. (b), AFM height profile.

Fig. 4
Fig. 4

Background removal and normalization of the emission spectrum. (a) Angularly- and spectrally-resolved, TE-polarized photoluminescence measurement of a nanostructured area on the sample. (b) TE-polarized photoluminescence measurement of an unstructured area on the sample. Multiplied with a matching factor, this emission is assumed to be the background of (a). (c) Background removal: measured signal (blue line) and background-free signal (red line) (TE-polarization, θ0 = 0°). The guided mode outcoupling peaks are approximately separated by subtracting the background. Note that the plotted intensity range has been limited. (d) Normalization. To obtain excitation-independent resonance peaks, the background-free emission spectrum is subsequently divided by the background spectrum at 0°.

Fig. 5
Fig. 5

Photoluminescence measurements of resonant scattering of the TE0 guided mode at 16 different multi-periodic nanostructures. Shown is the normalized emission intensity as a function of wavelength and emission angle perpendicular to the grating grooves (continuous background subtracted and normalized). Symmetric pairs of peaks arise due to the presence of forward- and backward-traveling modes. The numbers next to the strongest peaks indicate the scattering order m. Note how the introduction of an additional component grating in the lower two rows leads to an additional pair of peaks. The ridge widths of the component gratings are varied along the columns and rows of the figure and provide control over the intensity of the resonances.

Fig. 6
Fig. 6

Control of the peak intensities by a 350|450 multi-periodic nanostructure. Relative peak intensities with varying ridge width lrd,350nm of the 350-nm component. The ridge width of the 450-nm component is 100 nm and the wavelength is λ0 = 550 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin θ 0 = n eff m λ 0 Λ ,

Metrics