Abstract

We investigate the optical properties of silicon nanohole arrays for application in photovoltaic cells in terms of the modes within the structure. We highlight three types of modes: fundamental modes, important at long wavelengths; guided resonance modes, which enhance absorption for wavelengths where the intrinsic absorption of silicon is low; and channeling modes, which suppress front-surface reflection. We use this understanding to explain why the parameters of optimized nanohole arrays occur in specific ranges even as the thickness is varied.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Masson, M. Latour, M. Rekinger, I.-T. Theologitis, and M. Papoutsi, “Global Market Outlook for Photovoltaics 2013–2017,” European Photovoltaic Industry Association (2013), http://www.epia.org/news/publications/global-market-outlook-for-photovoltaics-2013-2017/ .
  2. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
    [CrossRef] [PubMed]
  3. H. Ossenbrink, T. Huld, A. Jäger Waldau, and N. Taylor, “PV Electricity Cost Maps,” http://iet.jrc.ec.europa.eu/remea/sites/remea/files/reqno_jrc83366_jrc_83366_2013_pv_electricity_cost_maps.pdf .
  4. M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21, 205305 (2010).
    [CrossRef] [PubMed]
  5. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett. 36, 1713–1715 (2011).
    [CrossRef] [PubMed]
  6. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
    [CrossRef] [PubMed]
  7. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
    [CrossRef] [PubMed]
  8. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
    [CrossRef]
  9. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2011).
    [CrossRef]
  10. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire and nanohole arrays for photo-voltaic applications,” Proc. SPIE 7772, 77721G (2010).
    [CrossRef]
  11. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10, 1012–1015 (2010).
    [CrossRef] [PubMed]
  12. G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
    [CrossRef]
  13. G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
    [CrossRef]
  14. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012).
    [CrossRef] [PubMed]
  15. F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X Wang, and H Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys. 109, 084306 (2011).
    [CrossRef]
  16. K.-Q. Peng, X Wang, L Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132, 6873 (2010).
    [CrossRef]
  17. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells: a numerical study,” Phys. Stat. Solidi A 205, 2777–2795 (2008).
    [CrossRef]
  18. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt: Res. Appl. 3, 189 (1995).
    [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1991).
  20. Available from: http://emustack.com/
  21. K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
    [CrossRef]
  22. American Society for Testing Materials, “Reference Solar Spectral Irradiance: Air Mass 1.5 Spectra,” http://rredc.nrel.gov/solar/spectra/am1.5/ .
  23. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 29, 510–519 (1961).
    [CrossRef]
  24. The parameter κj= |(T12)j,0|2 where T12 is the transmission scattering matrix that couples light from air to the nanohole array (see Ref. [25]). Index 0 labels incident plane wave.
  25. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, 1064–1081 (2011).
    [CrossRef]
  26. L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci. 34, 33–49 (1973).
  27. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540–1550 (2004).
    [PubMed]

2014 (1)

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
[CrossRef]

2012 (3)

2011 (5)

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[CrossRef] [PubMed]

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X Wang, and H Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys. 109, 084306 (2011).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, 1064–1081 (2011).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2011).
[CrossRef]

Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett. 36, 1713–1715 (2011).
[CrossRef] [PubMed]

2010 (5)

M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21, 205305 (2010).
[CrossRef] [PubMed]

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
[CrossRef]

K.-Q. Peng, X Wang, L Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132, 6873 (2010).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire and nanohole arrays for photo-voltaic applications,” Proc. SPIE 7772, 77721G (2010).
[CrossRef]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10, 1012–1015 (2010).
[CrossRef] [PubMed]

2008 (2)

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells: a numerical study,” Phys. Stat. Solidi A 205, 2777–2795 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

2007 (1)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

2004 (1)

1995 (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt: Res. Appl. 3, 189 (1995).
[CrossRef]

1973 (1)

L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci. 34, 33–49 (1973).

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 29, 510–519 (1961).
[CrossRef]

Andreani, L. C.

Artinyan, R.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
[CrossRef]

Asatryan, A. A.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[CrossRef]

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, 1064–1081 (2011).
[CrossRef]

Botten, L. C.

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, 1064–1081 (2011).
[CrossRef]

Bozzola, A.

Byrne, M. A.

Callard, S.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
[CrossRef]

Catchpole, K. R.

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10, 1012–1015 (2010).
[CrossRef] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

Choi, W. K.

M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21, 205305 (2010).
[CrossRef] [PubMed]

Crozier, K. B.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[CrossRef] [PubMed]

Dan, Y.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[CrossRef] [PubMed]

Dawood, M. K.

M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21, 205305 (2010).
[CrossRef] [PubMed]

de Sterke, C. M.

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, 1064–1081 (2011).
[CrossRef]

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540–1550 (2004).
[PubMed]

Demir, H. V.

Deschamps, T.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
[CrossRef]

Dossou, K. B.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[CrossRef]

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, 1064–1081 (2011).
[CrossRef]

Drouard, E.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
[CrossRef]

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
[CrossRef]

Du, Q. G.

Dunn, S. C.

Eggleton, B. J.

Ellenbogen, T.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[CrossRef] [PubMed]

Fahr, S.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells: a numerical study,” Phys. Stat. Solidi A 205, 2777–2795 (2008).
[CrossRef]

Fave, A.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
[CrossRef]

Garcia-Caurel, E.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
[CrossRef]

Genzel, L.

L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci. 34, 33–49 (1973).

Gomard, G.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
[CrossRef]

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
[CrossRef]

Green, M. A.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt: Res. Appl. 3, 189 (1995).
[CrossRef]

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10, 1012–1015 (2010).
[CrossRef] [PubMed]

Helgert, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells: a numerical study,” Phys. Stat. Solidi A 205, 2777–2795 (2008).
[CrossRef]

Hong, M. H.

M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21, 205305 (2010).
[CrossRef] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

i Cabarrocas, P. R.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
[CrossRef]

Kam, C. H.

Kaminski, A.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
[CrossRef]

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt: Res. Appl. 3, 189 (1995).
[CrossRef]

Kroll, M.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells: a numerical study,” Phys. Stat. Solidi A 205, 2777–2795 (2008).
[CrossRef]

Lederer, F.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells: a numerical study,” Phys. Stat. Solidi A 205, 2777–2795 (2008).
[CrossRef]

Lee, S.-T.

K.-Q. Peng, X Wang, L Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132, 6873 (2010).
[CrossRef]

Lemiti, M.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
[CrossRef]

Letartre, X.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
[CrossRef]

Li, J.

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X Wang, and H Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys. 109, 084306 (2011).
[CrossRef]

Li, L

K.-Q. Peng, X Wang, L Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132, 6873 (2010).
[CrossRef]

Lianto, P.

M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21, 205305 (2010).
[CrossRef] [PubMed]

Liew, T. H.

M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21, 205305 (2010).
[CrossRef] [PubMed]

Lin, C.

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2011).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire and nanohole arrays for photo-voltaic applications,” Proc. SPIE 7772, 77721G (2010).
[CrossRef]

Liscidini, M.

Litchinitser, N. M.

Martin, T. P.

L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci. 34, 33–49 (1973).

McPhedran, R. C.

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, 1064–1081 (2011).
[CrossRef]

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540–1550 (2004).
[PubMed]

Meng, X.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
[CrossRef]

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1991).

Peng, K.-Q.

K.-Q. Peng, X Wang, L Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132, 6873 (2010).
[CrossRef]

Peretti, R.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
[CrossRef]

Pertsch, T.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells: a numerical study,” Phys. Stat. Solidi A 205, 2777–2795 (2008).
[CrossRef]

Polman, A.

Poulton, C. G.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[CrossRef]

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, 1064–1081 (2011).
[CrossRef]

Povinelli, M. L.

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2011).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire and nanohole arrays for photo-voltaic applications,” Proc. SPIE 7772, 77721G (2010).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 29, 510–519 (1961).
[CrossRef]

Rockstuhl, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells: a numerical study,” Phys. Stat. Solidi A 205, 2777–2795 (2008).
[CrossRef]

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[CrossRef] [PubMed]

Seassal, C.

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
[CrossRef]

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
[CrossRef]

Seo, K.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[CrossRef] [PubMed]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 29, 510–519 (1961).
[CrossRef]

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[CrossRef] [PubMed]

Steinvurzel, P. E.

Sturmberg, B. C. P.

K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[CrossRef]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, 1064–1081 (2011).
[CrossRef]

Sun, X. W.

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X Wang, and H Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys. 109, 084306 (2011).
[CrossRef]

Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett. 36, 1713–1715 (2011).
[CrossRef] [PubMed]

Thong, J. T. L.

M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21, 205305 (2010).
[CrossRef] [PubMed]

Tripathy, S.

M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21, 205305 (2010).
[CrossRef] [PubMed]

Wang, F.

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X Wang, and H Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys. 109, 084306 (2011).
[CrossRef]

Wang, X

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X Wang, and H Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys. 109, 084306 (2011).
[CrossRef]

K.-Q. Peng, X Wang, L Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132, 6873 (2010).
[CrossRef]

White, T. P.

Wober, M.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[CrossRef] [PubMed]

Wong, S.

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X Wang, and H Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys. 109, 084306 (2011).
[CrossRef]

Wu, X.-L.

K.-Q. Peng, X Wang, L Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132, 6873 (2010).
[CrossRef]

Yu, H.

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X Wang, and H Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys. 109, 084306 (2011).
[CrossRef]

Yu, H. Y.

Zheng, H

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X Wang, and H Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys. 109, 084306 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012).
[CrossRef]

G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014).
[CrossRef]

J. Am. Chem. Soc. (1)

K.-Q. Peng, X Wang, L Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132, 6873 (2010).
[CrossRef]

J. Appl. Phys. (3)

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010).
[CrossRef]

F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X Wang, and H Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys. 109, 084306 (2011).
[CrossRef]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 29, 510–519 (1961).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (3)

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10, 1012–1015 (2010).
[CrossRef] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
[CrossRef] [PubMed]

Nanotechnology (1)

M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21, 205305 (2010).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Stat. Solidi A (1)

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells: a numerical study,” Phys. Stat. Solidi A 205, 2777–2795 (2008).
[CrossRef]

Proc. SPIE (1)

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire and nanohole arrays for photo-voltaic applications,” Proc. SPIE 7772, 77721G (2010).
[CrossRef]

Prog. Photovolt: Res. Appl. (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt: Res. Appl. 3, 189 (1995).
[CrossRef]

Surf. Sci. (1)

L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci. 34, 33–49 (1973).

Other (6)

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1991).

Available from: http://emustack.com/

American Society for Testing Materials, “Reference Solar Spectral Irradiance: Air Mass 1.5 Spectra,” http://rredc.nrel.gov/solar/spectra/am1.5/ .

The parameter κj= |(T12)j,0|2 where T12 is the transmission scattering matrix that couples light from air to the nanohole array (see Ref. [25]). Index 0 labels incident plane wave.

G. Masson, M. Latour, M. Rekinger, I.-T. Theologitis, and M. Papoutsi, “Global Market Outlook for Photovoltaics 2013–2017,” European Photovoltaic Industry Association (2013), http://www.epia.org/news/publications/global-market-outlook-for-photovoltaics-2013-2017/ .

H. Ossenbrink, T. Huld, A. Jäger Waldau, and N. Taylor, “PV Electricity Cost Maps,” http://iet.jrc.ec.europa.eu/remea/sites/remea/files/reqno_jrc83366_jrc_83366_2013_pv_electricity_cost_maps.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Square NH array structure; with air NHs, silicon matrix and silica glass substrate. NH arrays are parameterized by period d, radius r and height h. (b) Electric field distribution for the channelling Bloch mode discussed in Sect. 3.3.

Fig. 2
Fig. 2

Frequency and wavenumber dependence of fundamental, guided resonance and channeling modes in NH arrays with 60% volume fraction. Top axis: period corresponding to the first order reciprocal lattice vector needed to excite the mode. The black dot-dashed, dotted and dashed lines give the cut-offs of first diffraction order in air, silica glass and a silicon NH array of f = 60%. The black solid curve approximates the cut-off of the channeling modes (Eq. (5)). Magenta region: only fundamental modes supported; yellow region: guided resonance modes supported; cyan region: channeling modes supported; green region: both guided resonance and channeling modes supported. Horizontal red solid line: λ = 684 nm, for which αh = 0.5 for a silicon slab of thickness h = 2.33 μm. Vertical red dashed line: period d = 470 nm, where horizontal line intersects the dotted black curve.

Fig. 3
Fig. 3

Coupling constants of the fundamental (κf, red dashed curve) and channeling modes (κh, blue solid curve) together with the field concentrations of the fundamental (ζf, red dotted curve) and channeling modes (ζh, blue dot-dashed curve) for λ = 669 nm in NH arrays with f = 50%, versus period d. The green vertical line is the cut-off Eq. (3).

Fig. 4
Fig. 4

Absorption spectra of NH arrays with f = 50% and h = 2.33 μm. The blue solid line is the absorptance of an array with d = 25 nm, the red dotted line d = 200 nm and the black dashed line d = 500 nm

Fig. 5
Fig. 5

Reflection, transmission and absorption spectra for silicon NH arrays with period d = 500 nm and air volume fraction f = 50%, with an air superstrate and silica substrate. The green dotted curve for thickness h = 0.5 μm, the blue solid curve for h = 2.33 μm, the red dot-dashed curve is for h = 5 μm, and the black dashed line is for a semi-infinite array. The spectra are shown for λ < 1000 nm with the spectra becoming too complicated at larger wavelengths to be of use. This region of the spectra has low integrated absorptance, and is a negligible component of ultimate efficiency.

Fig. 6
Fig. 6

Ultimate efficiency of NH arrays with a thickness of (a) h = 0.5 μm; (b) h = 2.33 μm; (c) h = 5.0 μm versus period and air volume fraction. Green dots indicate local maxima.

Tables (1)

Tables Icon

Table 1 For three thicknesses h, the values for period d and air volume fraction f giving the local and global (bold) maxima in ultimate efficiency η.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η = λ l λ g I ( λ ) A ( λ ) λ λ g d λ λ l λ u I ( λ ) d λ ,
ζ = silicon E 2 d A unit cell E 2 d A ,
λ 1 = Re ( n eff ) d ,
n eff = ε b ε i ( 1 + f ) + ε b ( 1 f ) ε i ( 1 f ) + ε b ( 1 + f ) ,
λ h = Re ( n eff ) d / 2 ,

Metrics