Abstract

The successful development of multijunction photovoltaic devices with four or more subcells has placed additional importance on the design of high-quality broadband antireflection coatings. Antireflective nanostructures have shown promise for reducing reflection loss compared to the best thin-film interference coatings. However, material constraints make nanostructures difficult to integrate without introducing additional absorption or electrical losses. In this work, we compare the performance of various nanostructure configurations with that of an optimized multilayer antireflection coating. Transmission into a four-junction solar cell is computed for each antireflective design, and the corresponding cell efficiency is calculated. We find that the best performance is achieved with a hybrid configuration that combines nanostructures with a multilayer thin-film optical coating. This approach increases transmitted power into the top subcell by 1.3% over an optimal thin-film coating, corresponding to an increase of approximately 0.8% in the modeled cell efficiency.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
    [CrossRef]
  2. R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).
  3. F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
    [CrossRef]
  4. P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
    [CrossRef]
  5. P. Patel, D. Aiken, D. Chumney, A. Cornfeld, Y. Lin, C. Mackos, J. McCarty, N. Miller, P. Sharps, and M. Stan, “Initial results of the monolithically grown six-junction inverted metamorphic multi-junction solar cell,” in Proc 38th IEEE Photovoltaic Spec. Conf., (Institute of Electrical and Electronics Engineers, 2012), vol. 2, pp. 1–4.
  6. R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014).
    [CrossRef]
  7. D. J. Friedman, J. F. Geisz, A. G. Norman, M. W. Wanlass, and S. R. Kurtz, “0.7-eV GaInAs junction for a GaInP/GaAs/GaInas(1eV)/GaInAs(0.7eV) four-junction solar cell,” in Proc. 4th IEEE World Conference for Photovoltaic Energy Conversion, (Institute of Electrical and Electronics Engineers, 2006), pp. 598–602.
    [CrossRef]
  8. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
    [CrossRef]
  9. R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
    [CrossRef]
  10. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
    [CrossRef]
  11. D. J. Friedman, J. M. Olson, and S. R. Kurtz, “High-efficiency III-V multijunction solar cells,” in Handbook of Photovoltaic Science and Engineering, 2nd Ed., A. Luque and S. Hegedus, eds, (Wiley, Chichester UK, 2011), 314–364.
  12. D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000).
    [CrossRef]
  13. W. H. Southwell, “Coating design using very thin high- and low-index layers,” Appl. Opt. 24(4), 457–460 (1985).
    [CrossRef] [PubMed]
  14. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).
  15. S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).
  16. H. A. Macleod, Thin-Film Optical Filters (CRC Press, Boca Raton, Fla., 2001), Chap. 4.
  17. J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21, 1158–1162 (2013).
  18. D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J. S. Harris, “High-efficiency nanostructured window GaAs solar cells,” Nano Lett. 13(10), 4850–4856 (2013).
    [CrossRef] [PubMed]
  19. J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
    [CrossRef]
  20. K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proc 38th IEEE Photovoltaic Spec. Conf., (Institute of Electrical and Electronics Engineers, 2012), pp. 003322–003324.
  21. P. Yu, M.-Y. Chiu, C.-H. Chang, C.-Y. Hong, Y.-L. Tsai, H.-V. Han, and Y.-R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Prog. Photovolt. Res. Appl. 22(3), 300–307 (2014).
    [CrossRef]
  22. E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultra-broadband & wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
    [CrossRef]
  23. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [CrossRef] [PubMed]
  24. M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Antireflective coatings for multijunction solar cells under wide-angle ray bundles,” Opt. Express 20(7), 8136–8147 (2012).
    [CrossRef] [PubMed]
  25. P. I. Stavroulakis, S. A. Boden, T. Johnson, and D. M. Bagnall, “Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays,” Opt. Express 21(1), 1–11 (2013).
    [CrossRef] [PubMed]
  26. M. C. Hutley, “Diffraction gratings,” in Techniques of Physics, (Academic Press, London, 1982).
  27. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
    [CrossRef] [PubMed]
  28. A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
    [CrossRef]
  29. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983).
    [CrossRef] [PubMed]
  30. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
    [CrossRef] [PubMed]
  31. G. C. Park, Y. M. Song, E. K. Kang, and Y. T. Lee, “Size-dependent optical behavior of disordered nanostructures on glass substrates,” Appl. Opt. 51(24), 5890–5896 (2012).
    [CrossRef] [PubMed]
  32. W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).
  33. M. N. Polyanskiy, “Refractive Index Database” (2014), http://refractiveindex.info .
  34. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [CrossRef]

2014 (6)

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

P. Yu, M.-Y. Chiu, C.-H. Chang, C.-Y. Hong, Y.-L. Tsai, H.-V. Han, and Y.-R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Prog. Photovolt. Res. Appl. 22(3), 300–307 (2014).
[CrossRef]

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultra-broadband & wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[CrossRef]

2013 (5)

P. I. Stavroulakis, S. A. Boden, T. Johnson, and D. M. Bagnall, “Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays,” Opt. Express 21(1), 1–11 (2013).
[CrossRef] [PubMed]

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21, 1158–1162 (2013).

D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J. S. Harris, “High-efficiency nanostructured window GaAs solar cells,” Nano Lett. 13(10), 4850–4856 (2013).
[CrossRef] [PubMed]

R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
[CrossRef]

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

2012 (2)

2010 (4)

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[CrossRef] [PubMed]

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

2008 (1)

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

2007 (1)

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[CrossRef]

2006 (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

2000 (1)

D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000).
[CrossRef]

1985 (1)

1983 (1)

1982 (1)

S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).

1967 (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Aho, A.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21, 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Aiken, D. J.

D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000).
[CrossRef]

Antón, I.

Archer, M. J.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Atwater, H. A.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

Bagnall, D. M.

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

Bett, A. W.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Beutel, P.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Bhusari, D.

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

Blanc, N.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Boca, A.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

Boden, S. A.

Boisvert, J.

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

Bowers, J. E.

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultra-broadband & wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[CrossRef]

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

Carapella, J. J.

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

Chang, C.-H.

P. Yu, M.-Y. Chiu, C.-H. Chang, C.-Y. Hong, Y.-L. Tsai, H.-V. Han, and Y.-R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Prog. Photovolt. Res. Appl. 22(3), 300–307 (2014).
[CrossRef]

Chen, Y.

D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J. S. Harris, “High-efficiency nanostructured window GaAs solar cells,” Nano Lett. 13(10), 4850–4856 (2013).
[CrossRef] [PubMed]

Chiu, M.-Y.

P. Yu, M.-Y. Chiu, C.-H. Chang, C.-Y. Hong, Y.-L. Tsai, H.-V. Han, and Y.-R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Prog. Photovolt. Res. Appl. 22(3), 300–307 (2014).
[CrossRef]

Chiu, P. T.

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

Choi, H. J.

Cui, Y.

D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J. S. Harris, “High-efficiency nanostructured window GaAs solar cells,” Nano Lett. 13(10), 4850–4856 (2013).
[CrossRef] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Dimroth, F.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Dobrich, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Domínguez, C.

Drazek, C.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Duda, A.

R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
[CrossRef]

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

Edmondson, K. M.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

Fan, S.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Fetzer, C. M.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

Fiedeler, U.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

France, R. M.

R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014).
[CrossRef]

R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
[CrossRef]

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

Friedman, D. J.

R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014).
[CrossRef]

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultra-broadband & wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[CrossRef]

R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
[CrossRef]

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Garahan, A.

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[CrossRef]

Garcia, I.

R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014).
[CrossRef]

Geisz, J. F.

R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014).
[CrossRef]

R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
[CrossRef]

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Ghyselen, B.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Grave, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

Guina, M.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21, 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Guiot, E.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Haddad, M.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

Han, H.-V.

P. Yu, M.-Y. Chiu, C.-H. Chang, C.-Y. Hong, Y.-L. Tsai, H.-V. Han, and Y.-R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Prog. Photovolt. Res. Appl. 22(3), 300–307 (2014).
[CrossRef]

Hannappel, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Harris, J. S.

D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J. S. Harris, “High-efficiency nanostructured window GaAs solar cells,” Nano Lett. 13(10), 4850–4856 (2013).
[CrossRef] [PubMed]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

Hon, W. D.

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

Hong, C.-Y.

P. Yu, M.-Y. Chiu, C.-H. Chang, C.-Y. Hong, Y.-L. Tsai, H.-V. Han, and Y.-R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Prog. Photovolt. Res. Appl. 22(3), 300–307 (2014).
[CrossRef]

Hong, W.

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

Hsu, C.-M.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Huo, Y.

D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J. S. Harris, “High-efficiency nanostructured window GaAs solar cells,” Nano Lett. 13(10), 4850–4856 (2013).
[CrossRef] [PubMed]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).

Isshiki, T.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

Johnson, T.

Jones, K. M.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Kang, E. K.

Kang, Y.

D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J. S. Harris, “High-efficiency nanostructured window GaAs solar cells,” Nano Lett. 13(10), 4850–4856 (2013).
[CrossRef] [PubMed]

Karam, N. H.

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

Karcher, C.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Kibbler, A. E.

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

Kiehl, J. T.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

King, R. R.

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

Kontio, J. M.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Krause, R.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Larrabee, D.

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

Law, D. C.

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

Lee, Y. T.

Liang, D.

D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J. S. Harris, “High-efficiency nanostructured window GaAs solar cells,” Nano Lett. 13(10), 4850–4856 (2013).
[CrossRef] [PubMed]

Lin, C.-T.

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultra-broadband & wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[CrossRef]

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

Liu, X. Q.

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

McMahon, W. E.

R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014).
[CrossRef]

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultra-broadband & wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[CrossRef]

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

Mesropian, S.

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

Moriarty, T. E.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Niemi, T.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21, 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Norman, A. G.

R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014).
[CrossRef]

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Olavarria, W.

R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
[CrossRef]

Olavarria, W. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Olavarría, W.

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

Oliva, E.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Olson, J. M.

R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
[CrossRef]

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Park, G. C.

Perl, E. E.

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultra-broadband & wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[CrossRef]

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

Piccin, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Pilon, L.

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[CrossRef]

Polojärvi, V.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21, 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Romero, M. J.

R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014).
[CrossRef]

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Sala, G.

Salmi, J.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21, 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Salvetat, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Saxena, I.

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[CrossRef]

Schachtner, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Schramm, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Schwarzburg, K.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Sherif, R. A.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Siefer, G.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Signamarcheix, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Simon, J.

R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014).
[CrossRef]

Singer, S. B.

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

Song, Y. M.

Southwell, W. H.

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Stavroulakis, P. I.

Steiner, M. A.

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
[CrossRef]

Tauzin, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Tibbits, T. N. D.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Tommila, J.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21, 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Tsai, Y.-L.

P. Yu, M.-Y. Chiu, C.-H. Chang, C.-Y. Hong, Y.-L. Tsai, H.-V. Han, and Y.-R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Prog. Photovolt. Res. Appl. 22(3), 300–307 (2014).
[CrossRef]

Tukiainen, A.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21, 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Turtiainen, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Victoria, M.

Viheriälä, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Wanlass, M. W.

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

Ward, J. S.

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
[CrossRef]

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

Wekkeli, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).

Woo, R. L.

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

Wu, Y.-R.

P. Yu, M.-Y. Chiu, C.-H. Chang, C.-Y. Hong, Y.-L. Tsai, H.-V. Han, and Y.-R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Prog. Photovolt. Res. Appl. 22(3), 300–307 (2014).
[CrossRef]

Yen, J.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

Yin, J.

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[CrossRef]

Yoon, H.

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

Young, M.

R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
[CrossRef]

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

Yu, J. S.

Yu, P.

P. Yu, M.-Y. Chiu, C.-H. Chang, C.-Y. Hong, Y.-L. Tsai, H.-V. Han, and Y.-R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Prog. Photovolt. Res. Appl. 22(3), 300–307 (2014).
[CrossRef]

Yu, Z.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Zakaria, A.

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

Zhu, J.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[CrossRef]

Endeavor (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

IEEE J. Photovoltaics (4)

R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013).
[CrossRef]

P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014).
[CrossRef]

R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014).
[CrossRef]

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultra-broadband & wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[CrossRef]

IEEE J. Photovoltics (1)

W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).

J. Appl. Phys. (2)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007).
[CrossRef]

J. Mod. Opt. (1)

S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).

Nano Lett. (2)

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J. S. Harris, “High-efficiency nanostructured window GaAs solar cells,” Nano Lett. 13(10), 4850–4856 (2013).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (4)

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21, 1158–1162 (2013).

P. Yu, M.-Y. Chiu, C.-H. Chang, C.-Y. Hong, Y.-L. Tsai, H.-V. Han, and Y.-R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Prog. Photovolt. Res. Appl. 22(3), 300–307 (2014).
[CrossRef]

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014).
[CrossRef]

Sol. Energy Mater. Sol. Cells (3)

D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010).
[CrossRef]

D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000).
[CrossRef]

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[CrossRef]

Other (8)

K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proc 38th IEEE Photovoltaic Spec. Conf., (Institute of Electrical and Electronics Engineers, 2012), pp. 003322–003324.

M. C. Hutley, “Diffraction gratings,” in Techniques of Physics, (Academic Press, London, 1982).

M. N. Polyanskiy, “Refractive Index Database” (2014), http://refractiveindex.info .

D. J. Friedman, J. M. Olson, and S. R. Kurtz, “High-efficiency III-V multijunction solar cells,” in Handbook of Photovoltaic Science and Engineering, 2nd Ed., A. Luque and S. Hegedus, eds, (Wiley, Chichester UK, 2011), 314–364.

H. A. Macleod, Thin-Film Optical Filters (CRC Press, Boca Raton, Fla., 2001), Chap. 4.

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).

P. Patel, D. Aiken, D. Chumney, A. Cornfeld, Y. Lin, C. Mackos, J. McCarty, N. Miller, P. Sharps, and M. Stan, “Initial results of the monolithically grown six-junction inverted metamorphic multi-junction solar cell,” in Proc 38th IEEE Photovoltaic Spec. Conf., (Institute of Electrical and Electronics Engineers, 2012), vol. 2, pp. 1–4.

D. J. Friedman, J. F. Geisz, A. G. Norman, M. W. Wanlass, and S. R. Kurtz, “0.7-eV GaInAs junction for a GaInP/GaAs/GaInas(1eV)/GaInAs(0.7eV) four-junction solar cell,” in Proc. 4th IEEE World Conference for Photovoltaic Energy Conversion, (Institute of Electrical and Electronics Engineers, 2006), pp. 598–602.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of the antireflective nanostructure designs explored in this paper. The top semiconductor layers are composed of a ~1 µm thick layer of indium gallium phosphide (InGaP2) and a ~20 nm thick layer of aluminum indium phosphide (AlInP2).

Fig. 2
Fig. 2

Plot showing the reflectance spectrum for a single layer optical coating with visible maxima at D = λ/2n1 and minima at D = λ/4n1 and 3λ/4n1.

Fig. 3
Fig. 3

Plot showing the refractive index (solid lines) and extinction coefficient (dashed lines) for the top two layers of a typical multijunction cell (InGaP2 and AlInP2) and common materials used for thin-film antireflection coatings (TiO2, Ta2O5, and SiO2). The dash-dotted black lines show the ideal refractive indices for a 3-layer step-down interference coating.

Fig. 4
Fig. 4

Plot showing the reflectance spectrum for 1000 nm tall AlInP2 nanostructures. The calculation begins to converge when the number of slices is greater than 20.

Fig. 5
Fig. 5

Plots showing reflectance as a function of wavelength for (a) SiO2 nanostructures placed on top of a SiO2 substrate and (b) AlInP2 nanostructures placed on top of an AlInP2 substrate. The nanostructure height is varied from 0 to 1000 nm.

Fig. 6
Fig. 6

Plot showing the cumulative height of the multilayer ARC for the hybrid configuration (Case 3) as a function of nanostructure height.

Fig. 7
Fig. 7

Plots showing transmitted, absorbed, and reflected power for (a) Case 1 - AlInP2 nanostructures, (b) Case 2 – TiO2 nanostructures, (c) Case 3 – The hybrid ARC design. (d) Plot showing absorption for the materials used in the nanostructure designs.

Fig. 8
Fig. 8

Plots showing the sum of reflection and absorption losses as a function of wavelength for the best configuration from Cases 1, 2, and 3. The percentage of power lost in the top subcell is shown in the box on the top right of the plot.

Fig. 9
Fig. 9

Correlation between AM1.5D power loss and modeled cell efficiency at 1000 suns concentration. The two solid lines show linear fits to the data. The dashed line shows where the linear correlation between cell efficiency and power loss breaks down due to undersupply of photons to the top subcell.

Tables (1)

Tables Icon

Table 1 Antireflection Coating Comparison

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F= λ min λ max P(λ)*[1T(λ)]dλ .
sin( θ T )= m λ 0 nd +sin( θ I ).
d AlIn P 2 d Si O 2 = d Si O 2 d AlIn P 2 1 2 .
S λ = H*n λ 0 *(#ofslices) .
AbsorptionLoss=1 e (4πkD/λ) .

Metrics