Abstract

To enhance the efficiency of solar cells, a luminescent down shifting layer can be applied in order to adapt the solar spectrum to the spectral internal quantum efficiency of the semiconductor. Optimization of such luminescent down shifting layers benefits from quick and direct evaluation methods. In this paper, the potential of the adding-doubling method is investigated to simulate the optical behavior of an encapsulated solar cell including a planar luminescent down shifting layer. The results of the adding-doubling method are compared with traditional Monte Carlo ray tracing simulations. The average relative deviation is found to be less than 1.5% for the absorptance in the active layer and the reflectance from the encapsulated cell, while the computation time can be decreased with a factor 52. Furthermore, the adding-doubling method is adopted to investigate the suitability of the SrB4O7:5%Sm2 + ,5%Eu2 + phosphor as a luminescent down shifting material in combination with a Copper Indium Gallium Selenide solar cell. A maximum increase of 9.0% in the short-circuit current can be expected if precautions are taken to reduce the scattering by matching the refractive index of host material to the phosphor particles. To be useful as luminescent down shifting material, the minimal value of the quantum yield of the phosphor is determined to be 0.64.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. J. H. M. van Sark, “Enhancement of solar cell performance by employing planar spectral converters,” Appl. Phys. Lett. 87(15), 151117 (2005).
    [CrossRef]
  2. E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
    [CrossRef]
  3. P. Chung, H.-H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
    [CrossRef]
  4. W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen, and E. H. Lysen, “Enhancing solar cell efficiency by using spectral converters,” Sol. Energy Mater. Sol. Cells 87(1-4), 395–409 (2005).
    [CrossRef]
  5. H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
    [CrossRef]
  6. B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: Ray-Tracing Simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
    [CrossRef]
  7. E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
    [CrossRef]
  8. C. del Cañizo, I. Tobías, J. Pérez-Bedmar, A. C. Pan, and A. Luque, “Implementation of a Monte Carlo method to model photon conversion for solar cells,” Thin Solid Films 516(20), 6757–6762 (2008).
    [CrossRef]
  9. E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
    [CrossRef]
  10. J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
    [CrossRef] [PubMed]
  11. G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. R. Soc. Lond. 11(0), 545–556 (1860).
    [CrossRef]
  12. W. J. Wiscombe, “On initialization, error and flux conservation in the doubling method,” J. Quant. Spectrosc. Radiat. Transf. 16(8), 637–658 (1976).
    [CrossRef]
  13. J. E. Hansen, “Radiative transfer by doubling very thin layers,” Astrophys. J. 155, 565–573 (1969).
    [CrossRef]
  14. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [CrossRef] [PubMed]
  15. W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt. 47(7), 908–919 (2008).
    [CrossRef] [PubMed]
  16. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
    [CrossRef] [PubMed]
  17. S. Leyre, G. Durinck, B. Van Giel, W. Saeys, J. Hofkens, G. Deconinck, and P. Hanselaer, “Extended adding-doubling method for fluorescent applications,” Opt. Express 20(16), 17856–17872 (2012).
    [CrossRef] [PubMed]
  18. K. R. McIntosh, J. N. Cotsell, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (Philadelphia, 2009), pp. 544–549.
    [CrossRef]
  19. P. K. Johnson, A. O. Pudov, J. R. Sites, K. Ramanathan, F. S. Hasoon, and D. E. Tarrant, “Interface properties of CIGS(S)/buffer layers formed by the Cd-partial electroyle process,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, 2002), pp. 1–4.
  20. C. Battaglia, M. Boccard, F.-J. Haug, and C. Ballif, “Light trapping in solar cells: When does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112(9), 094504 (2012).
    [CrossRef]
  21. D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(S3), A395–A405 (2012).
    [CrossRef] [PubMed]
  22. Z. Liu, S. Liu, K. Wang, and X. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Appl. Opt. 49(2), 247–257 (2010).
    [CrossRef] [PubMed]
  23. L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013).
    [CrossRef]
  24. J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington Approximation for radiative flux transfer,” J. Atmos. Sci. 33(12), 2452–2459 (1976).
    [CrossRef]
  25. J.-G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” J. Mater. Chem. 19(47), 8907–8919 (2009).
    [CrossRef]
  26. I. Denisyuk and M. Fokina, “A review of high nanoparticles concentration composites: Semiconductor and high refractive index materials,” in Nanocrystals, Y. Masuda, Ed. (InTech, 2010), pp. 109–142.
  27. T. C. Choy, Effective Medium Theory: Principles and Applications. (Oxford: Clarendon Press, 1999).
  28. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
    [CrossRef]
  29. C. Lü, Z. Cui, Z. Li, B. Yang, and J. Shen, “High refractive index thin films of ZnS/polythiourethane nanocomposites,” J. Mater. Chem. 13(3), 526–530 (2003).
    [CrossRef]
  30. D. Şahin and B. Ilan, “Radiative transport theory for light propagation in luminescent media,” J. Opt. Soc. Am. A 30(5), 813–820 (2013).
    [CrossRef] [PubMed]
  31. D. Yudovsky and L. Pilon, “Modeling the local excitation fluence rate and fluorescence emission in absorbing and strongly scattering multilayered media,” Appl. Opt. 49(31), 6072–6084 (2010).
    [CrossRef]
  32. A. Joshi, J. C. Rasmussen, E. M. Sevick-Muraca, T. A. Wareing, and J. McGhee, “Radiative transport-based frequency-domain fluorescence tomography,” Phys. Med. Biol. 53(8), 2069–2088 (2008).
    [CrossRef] [PubMed]

2013 (2)

L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013).
[CrossRef]

D. Şahin and B. Ilan, “Radiative transport theory for light propagation in luminescent media,” J. Opt. Soc. Am. A 30(5), 813–820 (2013).
[CrossRef] [PubMed]

2012 (4)

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(S3), A395–A405 (2012).
[CrossRef] [PubMed]

S. Leyre, G. Durinck, B. Van Giel, W. Saeys, J. Hofkens, G. Deconinck, and P. Hanselaer, “Extended adding-doubling method for fluorescent applications,” Opt. Express 20(16), 17856–17872 (2012).
[CrossRef] [PubMed]

C. Battaglia, M. Boccard, F.-J. Haug, and C. Ballif, “Light trapping in solar cells: When does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112(9), 094504 (2012).
[CrossRef]

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[CrossRef]

2011 (3)

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[CrossRef]

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[CrossRef] [PubMed]

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[CrossRef]

2010 (2)

2009 (2)

J.-G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” J. Mater. Chem. 19(47), 8907–8919 (2009).
[CrossRef]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[CrossRef]

2008 (3)

C. del Cañizo, I. Tobías, J. Pérez-Bedmar, A. C. Pan, and A. Luque, “Implementation of a Monte Carlo method to model photon conversion for solar cells,” Thin Solid Films 516(20), 6757–6762 (2008).
[CrossRef]

W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt. 47(7), 908–919 (2008).
[CrossRef] [PubMed]

A. Joshi, J. C. Rasmussen, E. M. Sevick-Muraca, T. A. Wareing, and J. McGhee, “Radiative transport-based frequency-domain fluorescence tomography,” Phys. Med. Biol. 53(8), 2069–2088 (2008).
[CrossRef] [PubMed]

2007 (2)

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: Ray-Tracing Simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
[CrossRef]

P. Chung, H.-H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
[CrossRef]

2005 (2)

W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen, and E. H. Lysen, “Enhancing solar cell efficiency by using spectral converters,” Sol. Energy Mater. Sol. Cells 87(1-4), 395–409 (2005).
[CrossRef]

W. G. J. H. M. van Sark, “Enhancement of solar cell performance by employing planar spectral converters,” Appl. Phys. Lett. 87(15), 151117 (2005).
[CrossRef]

2003 (1)

C. Lü, Z. Cui, Z. Li, B. Yang, and J. Shen, “High refractive index thin films of ZnS/polythiourethane nanocomposites,” J. Mater. Chem. 13(3), 526–530 (2003).
[CrossRef]

1993 (2)

1979 (1)

H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
[CrossRef]

1976 (2)

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington Approximation for radiative flux transfer,” J. Atmos. Sci. 33(12), 2452–2459 (1976).
[CrossRef]

W. J. Wiscombe, “On initialization, error and flux conservation in the doubling method,” J. Quant. Spectrosc. Radiat. Transf. 16(8), 637–658 (1976).
[CrossRef]

1969 (1)

J. E. Hansen, “Radiative transfer by doubling very thin layers,” Astrophys. J. 155, 565–573 (1969).
[CrossRef]

1860 (1)

G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. R. Soc. Lond. 11(0), 545–556 (1860).
[CrossRef]

Ballif, C.

C. Battaglia, M. Boccard, F.-J. Haug, and C. Ballif, “Light trapping in solar cells: When does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112(9), 094504 (2012).
[CrossRef]

Battaglia, C.

C. Battaglia, M. Boccard, F.-J. Haug, and C. Ballif, “Light trapping in solar cells: When does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112(9), 094504 (2012).
[CrossRef]

Beek, J. F.

Benicewicz, B. C.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[CrossRef]

Boccard, M.

C. Battaglia, M. Boccard, F.-J. Haug, and C. Ballif, “Light trapping in solar cells: When does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112(9), 094504 (2012).
[CrossRef]

Broer, D. J.

Chen, J.

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[CrossRef] [PubMed]

Chung, H.-H.

P. Chung, H.-H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
[CrossRef]

Chung, P.

P. Chung, H.-H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
[CrossRef]

Cotsell, J. N.

K. R. McIntosh, J. N. Cotsell, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (Philadelphia, 2009), pp. 544–549.
[CrossRef]

Cui, Z.

C. Lü, Z. Cui, Z. Li, B. Yang, and J. Shen, “High refractive index thin films of ZnS/polythiourethane nanocomposites,” J. Mater. Chem. 13(3), 526–530 (2003).
[CrossRef]

Da, Z.

L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013).
[CrossRef]

de Boer, D. K. G.

Debije, M. G.

Deconinck, G.

del Cañizo, C.

C. del Cañizo, I. Tobías, J. Pérez-Bedmar, A. C. Pan, and A. Luque, “Implementation of a Monte Carlo method to model photon conversion for solar cells,” Thin Solid Films 516(20), 6757–6762 (2008).
[CrossRef]

Durinck, G.

Gao, J.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[CrossRef]

Haibo, R.

L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013).
[CrossRef]

Hanselaer, P.

Hansen, J. E.

J. E. Hansen, “Radiative transfer by doubling very thin layers,” Astrophys. J. 155, 565–573 (1969).
[CrossRef]

Hasoon, F. S.

P. K. Johnson, A. O. Pudov, J. R. Sites, K. Ramanathan, F. S. Hasoon, and D. E. Tarrant, “Interface properties of CIGS(S)/buffer layers formed by the Cd-partial electroyle process,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, 2002), pp. 1–4.

Haug, F.-J.

C. Battaglia, M. Boccard, F.-J. Haug, and C. Ballif, “Light trapping in solar cells: When does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112(9), 094504 (2012).
[CrossRef]

Hodgson, R. T.

H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
[CrossRef]

Hofkens, J.

Holloway, P. H.

P. Chung, H.-H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
[CrossRef]

Hovel, H. J.

H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
[CrossRef]

Ilan, B.

Intes, X.

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[CrossRef] [PubMed]

Johnson, P. K.

P. K. Johnson, A. O. Pudov, J. R. Sites, K. Ramanathan, F. S. Hasoon, and D. E. Tarrant, “Interface properties of CIGS(S)/buffer layers formed by the Cd-partial electroyle process,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, 2002), pp. 1–4.

Joseph, J. H.

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington Approximation for radiative flux transfer,” J. Atmos. Sci. 33(12), 2452–2459 (1976).
[CrossRef]

Joshi, A.

A. Joshi, J. C. Rasmussen, E. M. Sevick-Muraca, T. A. Wareing, and J. McGhee, “Radiative transport-based frequency-domain fluorescence tomography,” Phys. Med. Biol. 53(8), 2069–2088 (2008).
[CrossRef] [PubMed]

Junyuan, L.

L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013).
[CrossRef]

Ketola, B. M.

K. R. McIntosh, J. N. Cotsell, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (Philadelphia, 2009), pp. 544–549.
[CrossRef]

Keur, W.

Klampaftis, E.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[CrossRef]

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[CrossRef]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[CrossRef]

Leyre, S.

Li, Y.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[CrossRef]

Li, Z.

C. Lü, Z. Cui, Z. Li, B. Yang, and J. Shen, “High refractive index thin films of ZnS/polythiourethane nanocomposites,” J. Mater. Chem. 13(3), 526–530 (2003).
[CrossRef]

Linsong, Z.

L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013).
[CrossRef]

Liu, J.-G.

J.-G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” J. Mater. Chem. 19(47), 8907–8919 (2009).
[CrossRef]

Liu, S.

Liu, Z.

Lü, C.

C. Lü, Z. Cui, Z. Li, B. Yang, and J. Shen, “High refractive index thin films of ZnS/polythiourethane nanocomposites,” J. Mater. Chem. 13(3), 526–530 (2003).
[CrossRef]

Luo, X.

Luque, A.

C. del Cañizo, I. Tobías, J. Pérez-Bedmar, A. C. Pan, and A. Luque, “Implementation of a Monte Carlo method to model photon conversion for solar cells,” Thin Solid Films 516(20), 6757–6762 (2008).
[CrossRef]

Lysen, E. H.

W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen, and E. H. Lysen, “Enhancing solar cell efficiency by using spectral converters,” Sol. Energy Mater. Sol. Cells 87(1-4), 395–409 (2005).
[CrossRef]

McGhee, J.

A. Joshi, J. C. Rasmussen, E. M. Sevick-Muraca, T. A. Wareing, and J. McGhee, “Radiative transport-based frequency-domain fluorescence tomography,” Phys. Med. Biol. 53(8), 2069–2088 (2008).
[CrossRef] [PubMed]

McIntosh, K. R.

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[CrossRef]

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: Ray-Tracing Simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
[CrossRef]

K. R. McIntosh, J. N. Cotsell, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (Philadelphia, 2009), pp. 544–549.
[CrossRef]

Meijerink, A.

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(S3), A395–A405 (2012).
[CrossRef] [PubMed]

W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen, and E. H. Lysen, “Enhancing solar cell efficiency by using spectral converters,” Sol. Energy Mater. Sol. Cells 87(1-4), 395–409 (2005).
[CrossRef]

Nicolaï, B. M.

Norris, A. W.

K. R. McIntosh, J. N. Cotsell, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (Philadelphia, 2009), pp. 544–549.
[CrossRef]

Pan, A. C.

C. del Cañizo, I. Tobías, J. Pérez-Bedmar, A. C. Pan, and A. Luque, “Implementation of a Monte Carlo method to model photon conversion for solar cells,” Thin Solid Films 516(20), 6757–6762 (2008).
[CrossRef]

Pérez-Bedmar, J.

C. del Cañizo, I. Tobías, J. Pérez-Bedmar, A. C. Pan, and A. Luque, “Implementation of a Monte Carlo method to model photon conversion for solar cells,” Thin Solid Films 516(20), 6757–6762 (2008).
[CrossRef]

Pickering, J. W.

Pilon, L.

Powell, N. E.

K. R. McIntosh, J. N. Cotsell, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (Philadelphia, 2009), pp. 544–549.
[CrossRef]

Prahl, S. A.

Pudov, A. O.

P. K. Johnson, A. O. Pudov, J. R. Sites, K. Ramanathan, F. S. Hasoon, and D. E. Tarrant, “Interface properties of CIGS(S)/buffer layers formed by the Cd-partial electroyle process,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, 2002), pp. 1–4.

Qiaolin, L.

L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013).
[CrossRef]

Ramanathan, K.

P. K. Johnson, A. O. Pudov, J. R. Sites, K. Ramanathan, F. S. Hasoon, and D. E. Tarrant, “Interface properties of CIGS(S)/buffer layers formed by the Cd-partial electroyle process,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, 2002), pp. 1–4.

Ramon, H.

Rasmussen, J. C.

A. Joshi, J. C. Rasmussen, E. M. Sevick-Muraca, T. A. Wareing, and J. McGhee, “Radiative transport-based frequency-domain fluorescence tomography,” Phys. Med. Biol. 53(8), 2069–2088 (2008).
[CrossRef] [PubMed]

Richards, B. S.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[CrossRef]

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[CrossRef]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[CrossRef]

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: Ray-Tracing Simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
[CrossRef]

Ronda, C. R.

Ross, D.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[CrossRef]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[CrossRef]

Rungta, A.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[CrossRef]

Saeys, W.

Sahin, D.

Schadler, L. S.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[CrossRef]

Schropp, R. E. I.

W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen, and E. H. Lysen, “Enhancing solar cell efficiency by using spectral converters,” Sol. Energy Mater. Sol. Cells 87(1-4), 395–409 (2005).
[CrossRef]

Sevick-Muraca, E. M.

A. Joshi, J. C. Rasmussen, E. M. Sevick-Muraca, T. A. Wareing, and J. McGhee, “Radiative transport-based frequency-domain fluorescence tomography,” Phys. Med. Biol. 53(8), 2069–2088 (2008).
[CrossRef] [PubMed]

Seyrling, S.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[CrossRef]

Shen, J.

C. Lü, Z. Cui, Z. Li, B. Yang, and J. Shen, “High refractive index thin films of ZnS/polythiourethane nanocomposites,” J. Mater. Chem. 13(3), 526–530 (2003).
[CrossRef]

Siegela, R. W.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[CrossRef]

Sites, J. R.

P. K. Johnson, A. O. Pudov, J. R. Sites, K. Ramanathan, F. S. Hasoon, and D. E. Tarrant, “Interface properties of CIGS(S)/buffer layers formed by the Cd-partial electroyle process,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, 2002), pp. 1–4.

Sterenborg, H. J. C. M.

Stokes, G. G.

G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. R. Soc. Lond. 11(0), 545–556 (1860).
[CrossRef]

Tao, P.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[CrossRef]

Tarrant, D. E.

P. K. Johnson, A. O. Pudov, J. R. Sites, K. Ramanathan, F. S. Hasoon, and D. E. Tarrant, “Interface properties of CIGS(S)/buffer layers formed by the Cd-partial electroyle process,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, 2002), pp. 1–4.

Thennadil, S. N.

Tiwari, A. N.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[CrossRef]

Tobías, I.

C. del Cañizo, I. Tobías, J. Pérez-Bedmar, A. C. Pan, and A. Luque, “Implementation of a Monte Carlo method to model photon conversion for solar cells,” Thin Solid Films 516(20), 6757–6762 (2008).
[CrossRef]

Ueda, M.

J.-G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” J. Mater. Chem. 19(47), 8907–8919 (2009).
[CrossRef]

van Gemert, M. J. C.

Van Giel, B.

van Roosmalen, J. A. M.

W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen, and E. H. Lysen, “Enhancing solar cell efficiency by using spectral converters,” Sol. Energy Mater. Sol. Cells 87(1-4), 395–409 (2005).
[CrossRef]

van Sark, W. G. J. H. M.

W. G. J. H. M. van Sark, “Enhancement of solar cell performance by employing planar spectral converters,” Appl. Phys. Lett. 87(15), 151117 (2005).
[CrossRef]

W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen, and E. H. Lysen, “Enhancing solar cell efficiency by using spectral converters,” Sol. Energy Mater. Sol. Cells 87(1-4), 395–409 (2005).
[CrossRef]

van Wieringen, N.

Velazco-Roa, M. A.

Verbunt, P. P. C.

Viswanath, A.

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[CrossRef]

Wang, K.

Wareing, T. A.

A. Joshi, J. C. Rasmussen, E. M. Sevick-Muraca, T. A. Wareing, and J. McGhee, “Radiative transport-based frequency-domain fluorescence tomography,” Phys. Med. Biol. 53(8), 2069–2088 (2008).
[CrossRef] [PubMed]

Wei, W.

L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013).
[CrossRef]

Weinman, J. A.

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington Approximation for radiative flux transfer,” J. Atmos. Sci. 33(12), 2452–2459 (1976).
[CrossRef]

Welch, A. J.

Wiscombe, W. J.

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington Approximation for radiative flux transfer,” J. Atmos. Sci. 33(12), 2452–2459 (1976).
[CrossRef]

W. J. Wiscombe, “On initialization, error and flux conservation in the doubling method,” J. Quant. Spectrosc. Radiat. Transf. 16(8), 637–658 (1976).
[CrossRef]

Woodall, J. M.

H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
[CrossRef]

Xianlong, W.

L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013).
[CrossRef]

Xuemei, W.

L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013).
[CrossRef]

Yang, B.

C. Lü, Z. Cui, Z. Li, B. Yang, and J. Shen, “High refractive index thin films of ZnS/polythiourethane nanocomposites,” J. Mater. Chem. 13(3), 526–530 (2003).
[CrossRef]

Yudovsky, D.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

W. G. J. H. M. van Sark, “Enhancement of solar cell performance by employing planar spectral converters,” Appl. Phys. Lett. 87(15), 151117 (2005).
[CrossRef]

Astrophys. J. (1)

J. E. Hansen, “Radiative transfer by doubling very thin layers,” Astrophys. J. 155, 565–573 (1969).
[CrossRef]

J. Appl. Phys. (1)

C. Battaglia, M. Boccard, F.-J. Haug, and C. Ballif, “Light trapping in solar cells: When does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112(9), 094504 (2012).
[CrossRef]

J. Atmos. Sci. (1)

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington Approximation for radiative flux transfer,” J. Atmos. Sci. 33(12), 2452–2459 (1976).
[CrossRef]

J. Mater. Chem. (3)

J.-G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” J. Mater. Chem. 19(47), 8907–8919 (2009).
[CrossRef]

P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011).
[CrossRef]

C. Lü, Z. Cui, Z. Li, B. Yang, and J. Shen, “High refractive index thin films of ZnS/polythiourethane nanocomposites,” J. Mater. Chem. 13(3), 526–530 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

W. J. Wiscombe, “On initialization, error and flux conservation in the doubling method,” J. Quant. Spectrosc. Radiat. Transf. 16(8), 637–658 (1976).
[CrossRef]

J. Semicond. (1)

L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013).
[CrossRef]

J. Vac. Sci. Technol. A (1)

P. Chung, H.-H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007).
[CrossRef]

Med. Phys. (1)

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Med. Biol. (1)

A. Joshi, J. C. Rasmussen, E. M. Sevick-Muraca, T. A. Wareing, and J. McGhee, “Radiative transport-based frequency-domain fluorescence tomography,” Phys. Med. Biol. 53(8), 2069–2088 (2008).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. (1)

G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. R. Soc. Lond. 11(0), 545–556 (1860).
[CrossRef]

Prog. Photovolt. Res. Appl. (2)

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: Ray-Tracing Simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
[CrossRef]

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[CrossRef]

Sol. Energy Mater. (1)

H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
[CrossRef]

Sol. Energy Mater. Sol. Cells (3)

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[CrossRef]

W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen, and E. H. Lysen, “Enhancing solar cell efficiency by using spectral converters,” Sol. Energy Mater. Sol. Cells 87(1-4), 395–409 (2005).
[CrossRef]

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[CrossRef]

Thin Solid Films (1)

C. del Cañizo, I. Tobías, J. Pérez-Bedmar, A. C. Pan, and A. Luque, “Implementation of a Monte Carlo method to model photon conversion for solar cells,” Thin Solid Films 516(20), 6757–6762 (2008).
[CrossRef]

Other (4)

I. Denisyuk and M. Fokina, “A review of high nanoparticles concentration composites: Semiconductor and high refractive index materials,” in Nanocrystals, Y. Masuda, Ed. (InTech, 2010), pp. 109–142.

T. C. Choy, Effective Medium Theory: Principles and Applications. (Oxford: Clarendon Press, 1999).

K. R. McIntosh, J. N. Cotsell, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (Philadelphia, 2009), pp. 544–549.
[CrossRef]

P. K. Johnson, A. O. Pudov, J. R. Sites, K. Ramanathan, F. S. Hasoon, and D. E. Tarrant, “Interface properties of CIGS(S)/buffer layers formed by the Cd-partial electroyle process,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, 2002), pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Encapsulation geometry used for simulations (dimensions not to scale).

Fig. 2
Fig. 2

Transmittance spectra of Low-Iron Glass (blue) and EVA with (magenta) and without (red) uv blocker.

Fig. 3
Fig. 3

Reflectance (red) and IQE (black) of the CIGS cell, together with the excitation (blue) and emission spectrum (magenta) of the SrB4O7:5%Sm2+,5%Eu2+ phosphor.

Fig. 4
Fig. 4

Comparison between AD method (marks) and MC simulations (lines) of reflectance (R) and absorptance in the CIGS layer (A) of the encapsulated solar cell for an infinite solar cell, together with the incident irradiance on the cell (AM1.5 standard solar spectrum).

Fig. 5
Fig. 5

Accuracy (red) and time computation (blue), in function of the number of incident wavelengths for the MC simulations (left) and in function of the number of channels for the AD calculations (right). The black lines denote the accuracy threshold of 1%.

Fig. 6
Fig. 6

Relative gain in Isc by increasing the phosphor concentration in the LDS layer, with QY = 1 for the luminescent material.

Fig. 7
Fig. 7

Relative gain in Isc by increasing the phosphor concentration under conditions of a matched refractive index for different QY values for the luminescent material.

Fig. 8
Fig. 8

Relative gain in Isc by increasing the phosphor concentration under conditions of a matched refractive index and reduced Fresnel reflection in the multi-layer for different QY values for the luminescent material.

Fig. 9
Fig. 9

Maximum increase of the Isc and the concentration ρ of phosphor where the maximum occurs in function of the QY of the phosphor.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I sc = A(λ)E(λ)S IQE(λ) λ hc edλ
sL(r,s)=( μ a + μ s )L(r,s)+ μ s 4π p(s,s') L(r,s')dΩ'
sL(r,s)=( μ a + μ s )L(r,s)+ μ s 4π p(s,s')L(r,s')dΩ' + w M i=1 N { μ e ( λ i )QY 1 4π 4π L(r,s', λ i )dΩ' Δλ }
R 20 (λ)= R 21 (λ)+ T 12 (λ) (E R 10 (λ) R 12 (λ)) 1 R 10 (λ) T 21 (λ)
T 02 (λ)= T 12 (λ) (E R 10 (λ) R 12 (λ)) 1 T 01 (λ)
R 20 c ( λ i X , λ j M )= T 12 (E R 10 R 12 ) 1 [ R 10 ( R 12 c ( λ i X , λ j M ){ [ E R 10 c ( λ i X , λ j M ) R 12 c ( λ i X , λ j M ) ] 1 R 10 c ( λ i X , λ j M ) T 21 c ( λ i X , λ j M ) } + T 21 c ( λ i X , λ j M ) ) + R 10 c ( λ i X , λ j M ) [ E R 12 c ( λ i X , λ j M ) R 10 c ( λ i X , λ j M ) ] 1 T 21 ( λ i X ) ] + R 21 c ( λ i X , λ j M )+ T 12 c ( λ i X , λ j M ) [ E R 10 ( λ i X ) R 12 ( λ i X ) ] 1 R 10 ( λ i X ) T 21 ( λ i X )
T 02 c ( λ i X , λ j M )= T 12 (E R 10 R 12 ) 1 { R 10 R 12 c ( λ i X , λ j M ) [ E R 10 ( λ i X ) R 12 ( λ i X ) ] 1 T 01 ( λ i X ) + R 10 c ( λ i X , λ j M ) [ E R 12 ( λ i X ) R 10 ( λ i X ) ] 1 R 12 ( λ i X ) T 01 ( λ i X ) + T 01 c ( λ i X , λ j M ) } + T 12 c ( Δ λ i X ,Δ λ j M ) [ E R 10 ( Δ λ i X ) R 12 ( Δ λ i X ) ] 1 T 01 ( Δ λ i X )

Metrics